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Introduction: Functional imaging studies have demonstrated the recruitment of
additional neural resources as a possible mechanism to compensate for age and
Alzheimer’s disease (AD)-related cerebral pathology, the efficacy of which is potentially
modulated by underlying structural network connectivity. Additionally, structural network
efficiency (SNE) is associated with intelligence across the lifespan, which is a known
factor for resilience to cognitive decline. We hypothesized that SNE may be a surrogate
of the physiological basis of resilience to cognitive decline in elderly persons without
dementia and with age- and AD-related cerebral pathology.

Methods: We included 85 cognitively normal elderly subjects or mild cognitive 
impairment (MCI) patients submitted to baseline diffusion imaging, liquor specimens, 
amyloid-PET and longitudinal cognitive assessments. SNE was calculated from baseline 
MRI scans using fiber tractography and graph theory. Mixed l inear effects models were 
estimated to investigate the association of higher resilience to cognitive decline with 
higher SNE and the modulation of this association by increased cerebral amyloid, liquor 
tau or WMHV.

Results: For the majority of cognitive outcome measures, higher SNE was associated
with higher resilience to cognitive decline (p-values: 0.011–0.039). Additionally, subjects
with higher SNE showed more resilience to cognitive decline at higher cerebral amyloid
burden (p-values: <0.001–0.036) and lower tau levels (p-values: 0.002–0.015).

Conclusion: These results suggest that SNE to some extent may quantify the
physiological basis of resilience to cognitive decline most effective at the earliest stages
of AD, namely at increased amyloid burden and before increased tauopathy.

Keywords: resilience, structural network, connectome, Alzheimer’s disease, amyloid, white matter, diffusion
imaging

INTRODUCTION

In-vivo amyloid imaging has profoundly improved the diagnosis of Alzheimer’s disease (AD) at
its pre-dementia stages. However, individual predictions of cognitive decline are unsatisfactory
from a clinical perspective due to considerable variance (Vos et al., 2013; Insel et al., 2016; Jack
et al., 2016; Donohue et al., 2017), which presumably refers to an individual’s capacity to tolerate
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or compensate cerebral pathology, commonly termed reserve
or—more generally—resilience (Yaffe et al., 2011; Barulli and
Stern, 2013; Cabeza et al., 2018; Wolf et al., 2018). The
identification and quantification of an MRI-based surrogate of
the physiological basis of this resilience could thus complement
and significantly improve individual predictions of cognitive
decline based on cerebral pathology. However, the underlying
physiological basis of resilience to cognitive decline has not
conclusively been identified so far.

For an extensive discussion of hypotheses, please refer to
Barulli and Stern (2013) and Cabeza et al. (2018). Briefly,
functional imaging studies have demonstrated that sustained
cognition in aging is associated with maintained functional
connectivity (Tsvetanov et al., 2016, 2018). Furthermore, in
higher age and in the presence of cerebral pathology, the brain
seems to recruit more neural resources for given cognitive tasks
as compared to younger subjects or those with less pathology
present, which may be a resilience mechanism (Sebastian et al.,
2013; Reuter-Lorenz and Park, 2014; Stargardt et al., 2015;
Fernández-Cabello et al., 2016).

As functional imaging is limited to the specific tasks or
situations of the experiment performed, it is complementary to
these experiments to investigate the brain structures underlying
brain functions, whose structural organization demonstrably
coincides with and possibly modulates functional connectivity
(Damoiseaux, 2017). However, rather than being specific to
tasks brain structure is arguably the product of a lifetime’s
individual cognitive profile and thus reflects a convolute of
general everyday cognition. This notion is supported by the
repeated finding of the association of the brain’s structural
organization and intelligence (Li et al., 2009; Fischer et al.,
2014; Bathelt et al., 2018; Koenis et al., 2018), which
aims to measure the underlying general factor of cognitive
performance across different cognitive domains and tasks
(Deary et al., 2010). Interestingly, intelligence is also a known
resilience factor to cognitive decline (Schmand et al., 1997;
Whalley et al., 2004; Stern, 2012). These findings led us
to hypothesize that it may be worthwhile to investigate the
brain’s structural connectome as a potential predictor for
resilience to cognitive decline. In light of the repeatedly
demonstrated associations with intelligence cited above (Li et al.,
2009; Fischer et al., 2014), we chose global efficiency of the
network constructed from GM segments and reconstructed
WM connections, a measure that aims to model and quantify
parallel information transfer capacity (Li et al., 2009), for
the present study over the myriad of other available graph
theory-based options.

MATERIALS AND METHODS

Data used in the preparation of this article were obtained
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database1. The ADNI was launched in 2003 as a public-
private partnership, led by Principal Investigator Michael W.
Weiner, MD. The primary goal of ADNI has been to test

1http://adni.loni.usc.edu

whether serial magnetic resonance imaging (MRI), positron
emission tomography (PET), other biological markers, and
clinical and neuropsychological assessment can be combined to
measure the progression of mild cognitive impairment (MCI)
and early Alzheimer’s disease. For up-to-date information,
see www.adni-info.org. All procedures followed were as per
the ethical standards of the responsible committee on human
experimentation (institutional and national) and with the
Helsinki Declaration of 1975, and the applicable revisions at the
time of the investigation.

Subjects
Subjects and their respective data points were selected from
the database of the ADNI project according to the following
criteria: enrollment during the ADNI 2 phase in the cognitively
normal or MCI group, availability of two or more longitudinal
neuropsychological assessments as well as the availability of
the following imaging data at baseline: T1, FLAIR, diffusion-
weighted (DWI) MRI and florbetapir amyloid (AV45) PET.
MCI subjects were included to ensure sufficient variance of
cognition and pathological markers in a continuum of elderly
non-demented subjects for the assessment of possible resilience.
For details regarding the cognitive assessment within the
ADNI, please refer to the publicly available procedures manual
https://adni.loni.usc.edu/wp-content/uploads/2008/07/adni2-
procedures-manual.pdf. In total, 85 subjects consisting of
34 females and 51 males aged 56.5 to 89.0 years were included
(see Table 1 for demographics). Informed consent was obtained
from all subjects for being included in the study.

Corticospinal Fluid Measurement
All corticospinal fluid (CSF) biomarkers collected at different
centers were stored and analyzed at the Penn ADNI Biomarker
Core Laboratory at the University of Pennsylvania, Philadelphia,
PA, USA. CSF concentrations of total tau were measured in
the baseline CSF samples using the multiplex xMAP Luminex
platform (Luminex Corporation, Austin, TX, USA).We included
total tau instead of phosphorylated tau, as the latter is included
in the former and total tau thus includes tauopathy specific to
AD as well as more general tauopathy that is potentially relevant
for a cognitive outcome (Blennow et al., 2001). More details on
data collection and processing of the CSF samples can be found
elsewhere2 (Shaw et al., 2009).

APOE Genotype
Apolipoprotein (APOE) genotype was determined by genotyping
the two single nucleotide polymorphisms that define the APOE
ε2, ε3, and ε4 alleles (rs429358, rs7412) with DNA extracted by
Cogenics from a 3-ml aliquot of EDTA blood3.

Imaging Data Acquisition
DWI, FLAIR, and inversion-recovery spoiled gradient recalled
(IR-SPGR) T1-weighted imaging data were acquired on
several General Electric 3T scanners using scanner specific
protocols. Briefly, DWI data was acquired with a voxel size

2http://adni.loni.usc.edu/methods
3http://adni.loni.usc.edu/data-samples/genetic-data
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TABLE 1 | Sample demographics and descriptive statistics–mean ± standard deviation.

CN MCI Total group p-value

N 34 51 85
Gender F/M 18/16 16/35 34/51 0.078
Age at baseline 73.4 ± 6.4 72.1 ± 6.6 72.6 ± 6.5 0.651
Education 16.4 ± 2.6 16.0 ± 2.7 16.1 ± 2.7 0.500
APOE4 +/− 25/9 16/35 41/44 <0.001∗

ADAS-cog 8.5 ± 3.9 18.6 ± 7.13 14.5 ± 7.8 <0.001∗

CDR-SOB 0.04 ± 0.14 1.45 ± 0.81 0.89 ± 0.94 <0.001∗

MMSE 28.9 ± 1.4 27.6 ± 1.8 28.1 ± 1.8 <0.001∗

Network efficiency 252.9 ± 18.9 249.3 ± 15.4 250.6 ± 16.8 0.217
AV45-PET 1.08 ± 0.14 1.26 ± 0.24 1.19 ± 0.22 0.001∗

CSF TAU 61.29 ± 23.98 98.30 ± 61.02 83.50 ± 52.68 0.004∗

WMHV 0.38 ± 0.28 0.58 ± 57 0.53 ± 0.49 0.397

CN, cognitively normal; MCI, mild cognitive impairment. P-value of group differences as calculated by Mann–Whitney test for continuous and Pearsons’s Chi-squared test for categorical
variables. Education, in years. APOE4: apolipoprotein ε4, the positivity of one or two alleles. ADAS-cog, Alzheimer’s disease assessment scale; CDR-SOB, Clinical dementia rating
sum of boxes; MMSE, minimental state exam; AV45-PET: florbetapir positron emission tomography, global florbetapir standardized uptake value ratio. CSF TAU: liquor specimen total
tau aliquot. WMHV: normalized white matter hyperintensity volume, percent. ∗Statistically significant.

of 1.372 × 2.70 mm3, 41 diffusion gradients, and a b-value
of 1,000 s/mm2 using an echo-planar imaging sequence with
a 90◦ flip angle. T1-weighted data were acquired using a
gradient-echo sequence with an 11◦ flip angle and a voxel size of
1.022 × 1.20 mm3.

AV45 PET imaging data were acquired on several types of
scanners using different acquisition protocols. To increase data
uniformity, the data underwent a standardized preprocessing
procedure at the ADNI project. All imaging protocols and
preprocessing procedures are available at the ADNI website2.

T1-Weighted and FLAIR Data Processing
The T1-weighted IR-SPGR data were automatically tissue-
segmented and spatially normalized to MNI-space using SPM84

and the VBM8-toolbox5. Additionally, inverse transformations
fromMNI to native T1 space were calculated.

Gray matter (GM) was segmented into 106 functionally and
anatomically defined cortical regions, as well as the subcortical
basal ganglia regions as implemented in the probabilistic Harvard
Oxford Atlas, supplied with FSL.

Total intracranial volume (TIV), as well as hyperintensity
volume (WMHV), were calculated at ADNI core laboratories
from T1-weighted and FLAIR data using published tissue
segmentation methods (DeCarli et al., 2005; Fletcher et al., 2012).
WMHV was also normalized by dividing by the TIV.

DWI Data Processing
DWI data were corrected for eddy currents and motion artifacts
using the method of Rohde et al. (2004) as implemented
in VistaSoft; diffusion gradients were adjusted according
to the resulting transformations. Additionally, DWI data
were upsampled to 1 mm isotropic voxel size for further
processing. For fiber tractography, Anatomically Constrained
Tractography (ACT) as implemented in MRtrix was employed
(Smith et al., 2012). This approach incorporates anatomical
constraints based on tissue segmentation of T1 data. To
this end, VBM8 tissue segmented data in T1 native space

4http://www.fil.ion.ucl.ac.uk/spm/
5http://dbm.neuro.uni-jena.de/vbm8/

were coregistered using SPM8 to the upsampled DWI
B0 images and used in the subsequent ACT. Based on the
tissue segmentation images, the ACT framework calculates an
isocontour representing the interface of GM and WM for fiber
seeding. Subsequently, tractography seed points were placed
randomly along the GM-WM interface. Starting from these
points, the probabilistic ‘‘ifod2’’ tractography algorithm was
executed until 500,000 anatomically plausible streamlines were
reconstructed for each subject. Streamlines were accepted if they
met the anatomical constraints of ACT (Smith et al., 2012).

Network Reconstruction and
Characterization
To reconstruct fibers, the 106 Harvard Oxford Atlas GM
ROIs were first warped to native T1 space using the inverse
VBM8 normalization transformations and then transferred to
the upsampled DWI space using the transformation estimated
from the T1 to B0 coregistration.

Subsequently, for each ROI pair in each subject, the number of
the previously reconstructed streamlines (see above) intersecting
both ROIs was obtained and recorded to construct the adjacency
matrix. A connection threshold of at least three connecting
streamlines for each connection was applied (Li et al., 2009;
Fischer et al., 2014). Finally, structural network efficiency (SNE)
for each subject was calculated as the average efficiency of the
network according to the formula

SNE = 1/(n ∗ (n− 1)) ∗ Sumi6=j(1/dij)

where n represents the number of nodes and dij is the inverse
of the connection weights of the shortest path between node i
and j (Latora andMarchiori, 2001). For a detailed description and
discussion of the graph measures, see Fornito et al. (2015).

PET Data Processing
Subjects’ global cortical amyloid-β load was calculated from
AV45 PET images according to procedures established by the
ADNI6. Briefly, cortical amyloid was calculated as the average

6http://adni.loni.usc.edu/methods/pet-analysis/
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of the AV45 uptake in the frontal, angular/posterior cingulate,
lateral parietal, and temporal cortices normalized by dividing by
the mean uptake in the cerebellum.

Neuropsychological Assessment
Subjects underwent an extensive longitudinal
neuropsychological assessment generally every 12 months
over a span of years varying individually with the date of
inclusion in the study. For details regarding the cognitive
assessment within the ADNI, please refer to the publicly
available procedures manual7. Within the scope of this study, the
cognitive Alzheimer’s Disease Assessment Scale (ADAS-cog),
which spans several cognitive domains (Rosen et al., 1984),
as well as the Clinical Dementia Rating Scale Sum of Boxes
(CDRSOB) and the Mini-mental State Examination (MMSE)
were investigated. See Table 1 for descriptive statistics.

Resilience Assessment Model
In the present article, resilience to cognitive decline is modeled
employing a tetrad of sets of

(i) longitudinal measures quantifying cognitive outcome
(COG)—specifically ADAS-cog, CDRSOB, and MMSE,

(ii) measures of age-associated cerebral pathology
(PATH)—specifically AV45, TAU, and WMHV
at baseline,

(iii) a candidate resilience factor at baseline (RES)—specifically
SNE, and

(iv) a measure of time relative to baseline (T)—specifically
the number of months from baseline where the respective
cognitive assessments were performed.

These are combined in a general linear model in the following
way:

COG ∼ T + PATH + RES + T * PATH + T * RES + T * RES *
PATH + RES * PATH

In older adults, the cognitive outcome may typically decline
over time, reflected in a negative association of COG and T.
Furthermore, pathology may additionally negatively modulate
this association, reflected by a negative association of T*PATH
with COG. However, potential resilience factors may contribute
to a slower decline of cognitive outcome over time, reflected by
a positive association of T*RES with COG. More specifically, the
terms of interest and their interpretations within the scope of this
study were:

T*RES: the modulation of the time-dependent change of
COG by the candidate resilience factor (RES) independent of
present PATH→ if positive, this is termed general resilience to
cognitive decline

T*RES*PATH: the modulation of the time-dependent change
of COG by the candidate resilience factor (RES) that is dependent
on present PATH → if positive, this is termed dynamic
resilience to cognitive decline; if negative, this is termed limited
resilience to cognitive decline.

This model is based on a previously published statistical
approach to comprehensively quantify resilience (Wolf et al.,

7https://adni.loni.usc.edu/wp-content/uploads/2008/07/adni2-procedures-
manual.pdf

2018; Fischer et al., 2019) that has been extended here to
accommodate longitudinal neuropsychological data akin to
(Donohue et al., 2017). Additionally, a more comprehensive
description is included in the Supplementary Material to
this article.

Statistical Analysis
Descriptive statistics, as well as differences between the
CN and MCI groups, were calculated for all measures
included in subsequent statistical analyses using Mann–Whitney
tests for continuous and Pearson’s Chi-squared test for
categorical variables.

The resilience assessment model described above was
implemented using linearmixed-effects regressions that included
age, gender, years of education, and APOE4 positivity as
covariates as well as random effects for the subject and clinical
status (i.e., CN andMCI). For each cognitive measure, a group of
models with and without the model terms for general resilience
as well as dynamic/limited resilience for measures of pathology
(amyloid, tau WMHV) were estimated. Within each group,
the model with the lowest conditional AIC (cAIC; Greven and
Kneib, 2010) was regarded as best explaining the data. All
models with a conditional AIC exceeding the cAIC of the best
model within that group by less than 2 (i.e. ∆ cAIC < 2) were
regarded as having substantial evidence. The other models were
discarded. Additionally, marginal R2 was calculated for these
models (Nakagawa and Schielzeth, 2013). To lessen the chance
of overfitting, significance testing was then conducted only on
the resilience terms contained in all models retained within the
respective group, by using the likelihood-ratio test (LRT) and
additionally parametric bootstrapping at 1 mio. simulations.

All statistical analyses were conducted using R 3.4.0 as
well as the packages ‘‘lme4’’ (Bates et al., 2014), ‘‘robustlmm’’
(Koller, 2016), ‘‘cAIC4’’ (Säfken et al., 2018), ‘‘pbkrtest’’ (Halekoh
and Højsgaard, 2014) as well as ‘‘car’’ (Fox and Weisberg,
2019). Variance inflation was calculated for the best model
for each cognitive outcome variable. ADAS-cog was inverted
such that higher values meant better performance. WMHV was
log-transformed to achieve approximate normal distribution.
The significance threshold was set to α = 0.05 for all analyses.
Results of the resilience models were corrected for FDR at 5%.
A more technically comprehensive description of the statistical
analysis with a listing of all models estimated can be found in the
Supplementary Material to this article.

RESULTS

The following variables showed significant differences between
the CN and MCI groups: APOE4 positivity (p < 0.001), AV45
(p < 0.001), TAU (p: 0.004), ADAS-cog (p < 0.001), CDRSOB
(p < 0.001) and MMSE (p < 0.001). For descriptive statistics of
all variables considered, please refer to Table 1.

All mixed-effects regression models that best explained the
data for each cognitive measure according to cAIC contained
the term for general resilience (T*SNE) as well as a term
for dynamic resilience at elevated amyloid (T*SNE*AV45)
and limited resilience at elevated tau levels (T*SNE*TAU).
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Additionally, the best model for CDR-SOB contained a term
for limited resilience at elevated WMHV (T*SNE*WMHV). The
marginal R2 for the groups of models that best explained the data
ranged from 0.405 to 0.433. Please refer to the Supplementary
Material for a list of the best models and associated statistical
measures.

LRT yielded significant results for dynamic resilience
at elevated amyloid (p < 0.00001–0.03549, standardized
regression coefficients: 0.024–0.276) as well as for limited
resilience at elevated tau (p: 0.00164–0.01535, standardized
regression coefficents: −0.030 to −0.074) for all cognitive
measures. Additionally, the general resilience term was
significant for CDR-SOB and MMSE (p: 0.01138–0.03848,
standardized regression coefficents: 0.074–0.098). Finally, the
limited resilience term for elevated WMHV was significant
only for CDR-SOB (p: 0.01433, standardized regression
coefficient:−0.058).

Robust reestimation ofmodels yielded coefficients of the same
directionality and comparable magnitude. FDR correction at 5%
did not lead to the rejection of any of the results. P-values
reestimated using parametric bootstrapping were similar to
those calculated by LRT. Variance inflation factors were below
two for all predictors in the best fitting models. For an overview
of estimated coefficients and respective statistics please refer
to Table 2. For scatter plots of the data points please refer
to Figures 1, 2.

DISCUSSION

The main results of this study indicate that in a population
of non-demented elderly with varying amounts of age- and
AD-related cerebral pathology, higher efficiency of the cerebral
network may be associated with more resilience to cognitive
decline. This association was increased at higher amounts of
cerebral amyloid burden and decreased at higher levels of CSF
tau. SNE may therefore be a factor of dynamic resilience to
cognitive decline concerning amyloid load whilst being a limited
resilience factor concerning tau burden.

To our best knowledge, this is the first study investigating
the association of structural network properties and resilience
to cognitive decline, quantified as lower cognitive decline

unexplained by baseline cerebral pathology. However, other
studies have demonstrated associations between WM network
properties and other non-physiological resilience factors.
Specifically, three studies demonstrated an association between
intelligence and SNE (Li et al., 2009; Fischer et al., 2014; Bathelt
et al., 2018). A fourth study demonstrated an association between
education and network flow, a measure quantifying hypothetical
rerouting capabilities of the network (Wook Yoo et al., 2015).
Although these studies are of limited comparability due to
differences in methodology and sample composition, one may
be tempted to speculate that structural network properties and
SNE specifically may form part of the physiological basis of
intelligence and education as resilience factors. However, as
education was controlled for in all analyses of the present study,
the association of SNE with resilience to cognitive decline seems
to go beyond the effects of education.

A hypothetical mechanism by which SNE may be associated
with resilience to cognitive decline can be derived from
its association with intelligence. Intelligence ratings consist
of several cognitively demanding tests (Deary et al., 2010).
The synchronized processing of these tasks by functional
networks of distributed regions requires efficient and effective
information transfer between them, which in turn depends
on the structural connectivity and integrity of WM tracts
(Penke et al., 2012). Additionally, there is evidence from
functional imaging studies demonstrating that maintained
functional connectivity is more associated with cognitive
performance at higher age (Tsvetanov et al., 2016, 2018) and
that the brain engages in a compensatory activity in aging
and the presence of cerebral neuropathology by recruiting
additional neural resources across the brain (Reuter-Lorenz
and Park, 2014; Stargardt et al., 2015), which possibly depends
likewise on structural integrity and efficient organization as
a modulator of functional reorganization. Assuming that the
brain’s compensatory reaction to age-associated pathological
changes is alike to the compensatory reaction to aging, the
findings of the present study could be explained as follows: as
the aging brain accumulates deteriorative changes such as loss
of GM volume and in some cases AD-related pathology such
as amyloid accumulation, it engages compensatory processes
aimed at recruiting more neural resources, whose recruitment

TABLE 2 | Estimates of model terms of interest.

Cog Out Term of interest Std beta Rob std beta Chi2 p-value

ADAS-cog T ∗ SNE −0.004 −0.009 0.044 0.83338
ADAS-cog T ∗ SNE ∗ AV45 0.088 0.066 8.020 0.00463*
ADAS-cog T ∗ SNE ∗ TAU −0.074 −0.057 8.088 0.00446*
CDRSOB T ∗ SNE 0.098 0.090 4.284 0.03848*
CDRSOB T ∗ SNE ∗ AV45 0.276 0.216 56.736 <0.00001*
CDRSOB T ∗ SNE ∗ TAU −0.069 −0.073 5.876 0.01535*
CDRSOB T ∗ SNE ∗ WMHV −0.058 −0.046 5.997 0.01433*
MMSE T ∗ SNE 0.074 0.085 6.405 0.01138*
MMSE T ∗ SNE ∗ AV45 0.024 0.026 4.422 0.03549*
MMSE T ∗ SNE ∗ TAU −0.030 −0.026 9.914 0.00164*

Cog Out, Cognitive outcome; Std beta, standardized regression coefficient; Rob std beta, standardized regression coefficients of robust mixed-effects regression; ADAS-cog,
Alzheimer’s disease assessment scale; CDRSOB, clinical dementia rating sum of boxes; MMSE, mini-mental state examination; SNE, global efficiency of structural networks of
reconstructed white matter tracts connecting segmented gray matter regions. *Statistically significant.

Frontiers in Aging Neuroscience | www.frontiersin.org 5 February 2021 | Volume 13 | Article 637002

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Fischer et al. Structural Network Predicts Cognitive Decline

FIGURE 1 | Dynamic resilience to cognitive decline at high amyloid burden–scatter plots. High amyloid burden vs. low amyloid burden, median split. SNE, structural
network efficiency. Time, time in months after baseline. ADAS-cog, Alzheimer’s disease assessment scale; CDRSOB, clinical dementia rating sum of boxes; MMSE,
mini-mental state examination.

for task processing depends upon information transfer efficiency,
a surrogate measure of which may be SNE. It follows that
as the brain accumulates age- and, potentially, AD-related

deteriorative changes with time relative to baseline, SNE will
become more important for sustained cognition and thus more
associated with resilience. This is supported by the finding of
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FIGURE 2 | Limited resilience to cognitive decline at low corticospinal fluid (CSF) tau—scatter plots. High CSF tau vs. low CSF tau, median split. SNE, structural
network efficiency. Time, time in months after baseline. ADAS-cog, Alzheimer’s disease assessment scale; CDRSOB, clinical dementia rating sum of boxes; MMSE,
mini-mental state examination.

significant positive interaction terms of the time variable with
baseline SNE estimated for two out of three cognitive outcome
measures considered.

Interestingly, the association of SNE with resilience to
cognitive decline described above was increased in subjects with
higher baseline cerebral amyloid load, thus indicating resilience
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to cognitive decline that is dynamic with respect to the amyloid
burden. This result was consistent across all cognitive outcome
measures investigated and is also consistent with the resilience
mechanism proposed above: elevated cerebral amyloid load
has been demonstrated to be associated with a higher rate of
cognitive decline (Donohue et al., 2017). However, it is not locally
associated with GM atrophy at the earliest preclinical stages of
the AD trajectory (Karran et al., 2011; Kljajevic et al., 2014). In
this scenario, compensation by recruitment of additional neural
resources via the WM network would be both necessary as well
as effective, as the to be recruited neural resources in the form
of GM regions remain mostly intact. However, the opposite may
be true for increased levels of CSF tau at baseline, where the
decrease of cognitive decline due to higher baseline SNE was
consistently lower for all three measures of cognitive outcome
thus indicating resilience to cognitive decline that is limited
concerning tau. Increased tau is usually accompanied by more
clinically relevant cognitive impairment and neurodegeneration
(Solé-Padullés et al., 2011; Amlien et al., 2013) especially at later
stages of the AD-typical trajectory that is commonly referred
to as the amyloid cascade (Jack et al., 2013). In this scenario,
the to be recruited additional neural resources may already
be impaired, which would probably render the compensatory
functional reorganization less effective.

An alternative or perhaps a complementary explanation
of the limited resilience to cognitive decline at increased
levels of baseline CSF-tau is provided by the finding of WM
microstructural integrity deterioration at increased levels of
CSF-tau (Amlien et al., 2013). These may not be reflected in
the SNE measure considered in this study, but impair network
function such that compensation via recruitment of additional
neural resources is rendered less effective (Fernández-Cabello
et al., 2016). The same explanation could apply to the finding of
limited resilience to cognitive decline at higher baseline volume
of WMHV, which are associated with deterioration in local WM
integrity and cognition (Vernooij et al., 2009).

In our view, the hypotheses put forward regarding limited
resilience at increased tau warrant further studies investigating
how tau-related GM andWM changes impact SNE. Additionally,
as the tau measure employed in this study is a convolute of highly
AD-specific hyperphosphorylated tau and other forms of tau that
are also associated with other neurological disorders (Blennow
et al., 2001; Skillbäck et al., 2015), their differential effects on SNE
are of interest for the potential of SNE to act as a resilience factor
at neuropathologically more advanced stages of AD.

When considering the points discussed, one ought to bear in
mind that any variance of SNE associated with AV45, TAU, or
WMHV was partialled out for the estimation of all other model
coefficients. This may seem contradictory to the points made
in the previous paragraph, where it was argued that TAU and
WMHV may deterioratively affect the network and thus impair
its provision of compensatory capabilities, which seems likely
at least for elevated WMHV. This argument implies that the
putative effects of tau andWMHVon the network are reflected in
the SNE measure. If this had been the case, however, neither tau
nor WMHV would have modulated the association of SNE with
resilience to cognitive decline. To improve SNE as a surrogate

measure of the network’s potential to support resilience, future
studies might investigate modifications of SNE such that likely
changes due to tau and WMHV as demonstrated previously
(Vernooij et al., 2009; Amlien et al., 2013) will be reflected within
a modified SNE measure.

Finally, apart from the mechanistic considerations discussed
above, we believe that the results of this study may hold
potential clinical relevance. The inclusion of SNE in the best
models for all cognitive outcome measures increases the models’
conditional R2 by a considerable 12.5% for ADAS-cog, 15.7%
for CDRSOB, and 9.3% for MMSE, as can be demonstrated by
comparing the best models to the respective reduced models
with all terms containing SNE removed (data not shown).
This demonstrates that structural connectivity in general and
SNE, in particular, may increase the accuracy of predictions of
cognitive decline in elderly persons at risk of cognitive decline
due to increased amounts of biomarkers of AD-typical pathology.
Furthermore, future studies might investigate the factors that
determine individual SNE independent of cerebral pathology
to develop intervention strategies aimed at improving resilience
in individuals.

This study has several limitations. First, SNE and pathology
measures were measured at baseline. As such, further
longitudinal associations or interactions between them could
not be taken into account statistically. This means that the
modulation of the association of SNE with resilience to
cognitive decline by pathology measures might have another
alternative explanation: a lower association of resilience to
cognitive decline with SNE at higher baseline pathology could
also be explained by a time-lagged deteriorative association
between the pathology measure and SNE, whereas in this view
a higher association between resilience to cognitive decline
with SNE at higher baseline pathology could be explained by
time-lagged (compensatory) neuroplasticity of SNE as a response
to increasing baseline pathology. Second, the sample considered
potentially includes subjects with future sporadic or familial
AD, and the MCI cohort has additionally been enriched for
memory impairment. As such, the variables considered probably
do not follow a distribution representative for the general
population, which may limit the generalizability of results.
However, cognitive status (CN and MCI) was controlled for as a
random variable in statistical modeling. Third, global pathology
measures were used. Fourth, data were acquired at different sites
and scanners. However, including the center as an additional
random effect did not alter results (data not shown).

In conclusion, higher SNE may be associated with lower
cognitive decline in cognitively healthy elderly and patients of
MCI, especially so at the earlier stages of the AD biomarker
cascade characterized by increased amounts of baseline cerebral
amyloid load and low amounts of baseline CSF tau. SNE
may thus be a surrogate marker for the physiological basis
of resilience to cognitive decline and provide a direction for
further research aimed at improving the prediction of cognitive
decline of persons at risk of dementia as well as research
investigating factors leading to higher individual SNE to design
intervention strategies aiming to improve individual resilience to
cognitive decline.
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