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Abstract

The reproducibility crisis in neuroimaging has led to an increased demand for stan-

dardized data processing workflows. Within the ENIGMA consortium, we developed

HALFpipe (Harmonized Analysis of Functional MRI pipeline), an open-source, contain-

erized, user-friendly tool that facilitates reproducible analysis of task-based and

resting-state fMRI data through uniform application of preprocessing, quality assess-

ment, single-subject feature extraction, and group-level statistics. It provides state-

of-the-art preprocessing using fMRIPrep without the requirement for input data in

Brain Imaging Data Structure (BIDS) format. HALFpipe extends the functionality of

fMRIPrep with additional preprocessing steps, which include spatial smoothing, grand

mean scaling, temporal filtering, and confound regression. HALFpipe generates an

interactive quality assessment (QA) webpage to rate the quality of key preprocessing

outputs and raw data in general. HALFpipe features myriad post-processing functions

at the individual subject level, including calculation of task-based activation, seed-

based connectivity, network-template (or dual) regression, atlas-based functional

connectivity matrices, regional homogeneity (ReHo), and fractional amplitude of low-

frequency fluctuations (fALFF), offering support to evaluate a combinatorial number

of features or preprocessing settings in one run. Finally, flexible factorial models can

be defined for mixed-effects regression analysis at the group level, including multiple

comparison correction. Here, we introduce the theoretical framework in which
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HALFpipe was developed, and present an overview of the main functions of the pipe-

line. HALFpipe offers the scientific community a major advance toward addressing the

reproducibility crisis in neuroimaging, providing a workflow that encompasses

preprocessing, post-processing, and QA of fMRI data, while broadening core princi-

ples of data analysis for producing reproducible results. Instructions and code can be

found at https://github.com/HALFpipe/HALFpipe.
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1 | INTRODUCTION

The application of neuroimaging, in particular functional MRI (fMRI),

has led to an explosion in knowledge about brain functions implicated

in a range of human behaviors, cognitive processes, and emotions.

Such research has been spurred by rapid advances in computationally

intensive software required to perform complex algorithmic

processing and statistical modeling of fMRI data. The resulting prolif-

eration of software tools designed to fulfill various analytic functions

has produced a large array of options for carrying out any given type

of processing. Since the fMRI signal indirectly captures the neural pro-

cesses of interest, a series of computational operations on fMRI data,

referred to as the analysis pipeline, are necessary to arrive at interpret-

able results. In practice, each step is flexible and subject to a number

of choices by the researcher, termed analytic flexibility (Poldrack

et al., 2017). The steps in the analysis pipeline may be reordered, run

with different parameters, or may be completely omitted in some

cases. Understandably, users expect different tools performing the

same function to generate (near) identical results when supplied with

given input data. However, the multiplicity of tools has had the

unintended consequence of generating inconsistent results from stud-

ies designed to answer the same research question, sometimes even

when the same data is used as the starting point (Botvinik-Nezer

et al., 2020). Thus, analytic flexibility combined with the number of

analysis steps, as well as the possible parameters for running each

analysis step, has led to a vast multiplicity of methodologic variants

and an equal number of possible results. This situation has contrib-

uted in part to what is widely hailed as a crisis of reproducibility, which

now plagues the neuroimaging field (Gorgolewski et al., 2016;

Poldrack et al., 2017).

One solution to improving reproducibility is to constrain the

parameter space by limiting choices to default parameters established

from empirically-derived best practices (Grüning et al., 2018). For

instance, established pipelines such as fMRIPrep (Esteban et al., 2019)

and C-PAC (Craddock et al., 2013) have automated many of these

choices. An alternate approach is to run multiple analyses separately

on the same input data with the same or different pipelines, but with

different parameter selections for each analysis, and then compare

the results. This second approach, termed multiverse analysis (Steegen,

Tuerlinckx, Gelman, & Vanpaemel, 2016), has the advantage that

results from multiple analyses may be compared and alternate solu-

tions may be presented in published reports to promote increased

transparency. However, multiverse analysis has the disadvantage that

it may ultimately not be possible to determine the optimal or even the

correct solution, as true effects in nonsimulated fMRI data are often

unknown.

The reproducibility crisis has led to an increased demand for stan-

dardized workflows to conduct both the preprocessing and post-

processing stages of fMRI analysis. The recent introduction and

widespread adoption of standardized pipelines for fMRI data

preprocessing have provided the research community with much-

needed high-quality tools that have improved reproducibility

(Thompson et al., 2020). The four ingredients that are essential to data

analysis and reproducible results are: (a) data and metadata availabil-

ity, (b) code usage and transparency, (c) software installability, and

(d) re-creation of the runtime environment. Relative to other

processing pipelines, fMRIPrep (Esteban et al., 2019) has grown in pop-

ularity due to its adoption of best practices, open-source availability,

favorable user experience, and glass-box principles of transparency

(Poldrack, Gorgolewski, & Varoquaux, 2019). However, fMRIPrep is

limited to the minimal preprocessing steps of fMRI data analysis, while

variability in parameter selection for further preprocessing (e.g., data

cleaning) and subsequent postprocessing analysis steps (e.g., feature

extraction, model specification) may compromise reproducibility.

The Enhancing neuro imaging genetics through meta analysis

(ENIGMA) consortium has addressed the reproducibility crisis by

pooling observational study data from structural and diffusion imaging

(and more recently EEG and MEG), and by developing standardized

pipelines, data harmonization methodology, and quality control proto-

cols (Thompson et al., 2020). These workflows have successfully ana-

lyzed structural and diffusion MRI data aggregated from large

numbers of small- and medium-sized cohorts to accrue sufficient

power to yield robust results on a wide range of neuropsychiatric con-

ditions (e.g., Hoogman et al., 2020; Schmaal et al., 2020; van den

Heuvel et al., 2020), However, until now the ENIGMA consortium has

lacked the ability to reliably conduct consortium-wide analyses on

fMRI data. More recently, however, the ENIGMA task-based (Veer,

Waller, Lett, Erk, & Walter, 2019) and resting-state fMRI (Adhikari

et al., 2019) working groups have spurred initiatives to bring the

ENIGMA framework to the functional domain.
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To support these initiatives within ENIGMA, we developed a

standardized workflow that encompasses the essential elements of

task-based and resting-state fMRI analyses from raw data to

group-level statistics, builds on the progress and contributions of

fMRIPrep developers, and extends its functionality beyond

preprocessing steps to include additional preprocessing, post-

processing, and interactive tools for quality assessment. These

extended features include: automatic and reliable conversion of

fMRI data to BIDS format, spatial smoothing, temporal filtering,

extended confounds regression, calculation of task-based activa-

tions, and resting-state feature extraction, including seed-based

functional connectivity, network-template (dual) regression, atlas-

based functional connectivity matrices, regional homogeneity

(ReHo) analysis, and fractional amplitude of low-frequency fluctua-

tions (fALFF). Although each of these post-processing functions is

available in other software packages and a few pipelines have

incorporated a subset of these features, HALFpipe combines all

these post-processing tools from open-source neuroimaging pack-

ages with the preprocessing steps performed by fMRIPrep (see

Table 1). Furthermore, although HALFpipe provides recommended

settings for each of the processing steps (see Table 3), it allows

users to run any combinatorial number of these processing set-

tings, thereby offering a streamlined infrastructure for pursuing

multiverse analyses. Similar to other processing pipelines, HALFpipe

is available as a containerized image, thereby offering full control

over the computational environment. In this article, we provide a

detailed description of HALFpipe. First, we explain the software

architecture and implementation, followed by a walkthrough of the

procedure for running the software, and finally a discussion of the

potential applications of the pipeline.

2 | METHODS

The HALFpipe software is containerized, similar to fMRIPrep or C-PAC.

This means that it comes bundled with all other software that is

needed for it to run, such as fMRIPrep (Esteban, Markiewicz,

et al., 2019), MRIQC (Esteban et al., 2017), FSL (Jenkinson, Beckmann,

Behrens, Woolrich, & Smith, 2012), ANTs (Avants et al., 2011),

FreeSurfer (Fischl & Dale, 2000), and AFNI (Cox, 1996; Cox &

Hyde, 1997). As such, all users of one version of HALFpipe will be

using identical versions of these tools, because they are packaged

with the container. Thus, the containerization of HALFpipe software

aids reproducibility across different researchers and computing

environments.

We have provided the HALFpipe application in a Singularity con-

tainer and a Docker container. Singularity or Docker, which are both

freely available, must be installed prior to downloading the container-

ized HALFpipe application. Both Docker and Singularity perform so-

called operating-system-level virtualization, but are more efficient and

require less resources than virtual machines. Running Docker con-

tainers on a Linux or macOS operating system usually requires admin-

istrator privileges. Singularity is typically run on a Linux operating

system, and may be used without administrator privileges. Docker can

be run on the Windows operating system, but compatibility issues

may occur with respect to file systems.

Our HALFpipe development team adopted other software engi-

neering best practices, which promoted faster development, and

reduced code errors. These industry best practices, which have found

their way into research applications (Das, 2018), involve writing code

that is easy to read (albeit generally harder to write), the breakdown

of complex systems into several simpler subsystems, dedicated effort

TABLE 1 Comparison to other neuroimaging pipelines

HALFpipe C-PAC

fMRIPrep
MRIQC
FitLins

Conn
toolbox

XCP
toolbox

DPARSF
DPABI

Quality assessment Quality metrics Yes Yes Yes Yes Yes Yes

Visual quality assessment Yes Yes Yes Yes Yes Yes

Features Task-based activation Yes No Yes Noa Yes No

Seed-based connectivity Yes Yes No Yes Yes Yes

Dual regression Yes Yes No Yes No Yes

Atlas-based connectivity

matrix

Yes Yes No Yes Yes Yes

ReHo Yes Yes No Yesb Yes Yes

fALFF Yes Yes No Yes Yes Yes

Group statistics Yes Yes Yes Yes No Yes

Note: HALFpipe supports a number of different features that are also available in other pipelines such as the configurable pipeline for the analysis of

connectome C-PAC (Craddock et al., 2013), the Conn toolbox (Whitfield-Gabrieli and Nieto-Castanon 2012), the eXtensible Connectivity Pipeline XCP

(Ciric et al. 2018) and the data processing and analysis of brain images toolbox DPABI (Yan et al. 2016). fMRIPrep (Esteban, Markiewicz, et al. 2019) in

combination with Magnetic Resonance Imaging Quality Control tool (MRIQC) (Esteban et al., 2017) and FitLins (Markiewicz et al. 2016) allows users to

construct an analysis pipeline fully within the Nipype ecosystem (Esteban, Ciric, et al. 2020).
aTask-based connectivity is supported.
bAs implemented with LCOR (local correlation).
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toward thoughtful code design before implementation, and per-

forming continuous integration via unit tests (Beck, 2000).

2.1 | Ecosystem

HALFpipe has been developed as an open-source project and is

accepting contributions that offer new features, enhance functional-

ity, or improve efficiency. All changes are tracked using the Git version

control system, which is the de-facto standard in the open-source

community. In addition, before inclusion in the source tree, changes

will be reviewed and then undergo automated testing, which includes

unit tests and also running an entire analysis for one subject of the

OpenNeuro dataset ds000108 (Wager, Davidson, Hughes, Lindquist, &

Ochsner, 2008). This way unexpected side effects and bugs will be

caught and corrected before causing problems for users.

HALFpipe releases are made using semantic versioning as adapted

for compatibility with Python (Coghlan & Stufft, 2013). This means

that there will be feature releases that add new functionality and

patch releases that make minor adjustments to solve specific issues or

bugs. The development team takes great care that new patch releases

of dependencies such as fMRIPrep are regularly incorporated into

HALFpipe so that bug fixes are made available to users.

HALFpipe currently depends on the long-term support release

20.2.x of fMRIPrep. For future releases containing new features, the

developers will approve possible upgrades that are advantageous to

ENIGMA consortium projects. We may also consider replacing tools

used for specific processing steps or upgrading the standard brain

template in future releases based on such considerations, which will

be explained in the change log of each release.

2.2 | Databases

To automatically construct a neuroimaging data processing workflow,

the program needs to be able to fulfill queries such as “retrieve the

structural image for subject x.” Many programs implement such

queries using a database system. The queries also need to flexibly

interface with the logic of neuroimaging and processing pipelines,

which is relevant in the context of missing scans.

In the context of missing scans, HALFpipe always tries to execute

the best possible processing pipeline based on the data that is avail-

able. For example, a field map may have been routinely acquired

before each functional scan in a particular dataset. If one of these field

maps is missing, HALFpipe flexibly assigns another field map, for exam-

ple, one belonging to the preceding functional scan. However, HAL-

Fpipe will not use a field map from another scan session, as field

inhomogeneities are likely to have changed. Finally, HALFpipe does

not fail if a field map is missing, but simply omits the distortion correc-

tion step for that subject. Other examples include the ability of HAL-

Fpipe to match structural to functional images, and match task events

to a functional scan. This strategy is used throughout the construction

of processing workflows.

2.3 | Metadata

Processing of neuroimaging data requires access to relevant metadata,

such as temporal resolution, spatial resolution, and many others. Some

elements of metadata, such as echo time (TE), are represented

TABLE 3 Default values for preprocessing settings per feature

Feature

Preprocessed

image

Task-based

activation

Seed-based

connectivity

Dual regression Atlas-based

connectivity

matrix

ReHo fALFF

Preprocessing

step

Spatial

smoothing

6 mm 6 mma

Grand mean

scaling

10,000

ICA-AROMA Yes

Temporal filter Gaussian

(128 s FWHM)

Frequency-based

(0.01–0.1 Hz)

Confound

removal

None None

Add

confounds

to model

None

Note: Cells filled in gray indicate that this option cannot be selected in the user interface, all other settings can be adjusted by the user.
aDone on the statistical maps after feature extraction.

TABLE 2 Efficient pipeline construction speeds up multiverse
analyses

Naive approach
HALFpipe approach
(via hashing algorithm)

Processing time

(hh:mm)

01:39 + 01:36

+ 01:33 = 04:49
01:43
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differently depending on scanner manufacturer and DICOM conver-

sion software. The method for reading various types of data has been

harmonized in HALFpipe using the following three methods.

First, metadata can be stored in BIDS format. This means that a

JavaScript Object Notation (JSON) file accompanies each image file,

which contains the necessary metadata. BIDS calls this file the sidecar,

and common tools such as heudiconv (Halchenko et al., 2018) or

dcm2niix (Li, Morgan, Ashburner, Smith, & Rorden, 2016) generate

these files automatically. If these files are present, HALFpipe will

detect and use them. Second, instead of sidecar files, some software

tools store image metadata in the NIfTI header. The NIfTI format

defines fields that can fit metadata, but depending on how the image

file was created, this metadata may be missing. Some conversion pro-

grams also place the metadata in the description field in free-text for-

mat. This description can also be parsed and read automatically. Third,

information may be incorrectly represented due to user error, incom-

patible units of measurement, or archaic technical considerations. In

such cases, HALFpipe provides a mechanism to override the incorrect

values. For every metadata field, the user interface will prompt the

user to confirm that metadata values have been read or inferred cor-

rectly. The user can choose to manually enter the correct values.

2.4 | Interfaces

HALFpipe consists of different modules that need to pass data

between each other, such as file pathnames and the results of quality

assessment procedures. Developing an application as large and com-

plex as HALFpipe requires establishing predictable interfaces, which

prescribe data formats for communication within the application. An

advantage of this approach is that knowledgeable users can write

their own code to interface with HALFpipe.

HALFpipe uses the Python module marshmallow to implement

interfaces, called schemas in the module's nomenclature. All schemas

are defined in the halfpipe.schema module. When the user first starts

the application, the user interface is displayed by HALFpipe. It asks the

user a series of questions about the data set and the analysis plan, and

stores the inputs in a configuration file called spec.json. The configura-

tion file has predictable syntax and can be easily scripted or modified,

which enables collaborative studies to harmonize analysis plans.

2.5 | Workflow engine

To obtain reproducible results, a core requirement for HALFpipe was

reproducible execution of the processing pipeline. As the ENIGMA con-

sortium requires fMRI analysis of large datasets with several thousand

samples, HALFpipe was designed to parallelize processing on multiple

computers or processor cores. Both of these specifications were

achieved by implementation in Nipype, NeuroImaging in Python: Pipe-

lines, and Interfaces (Gorgolewski et al., 2011). Nipype is a workflow

engine for neuroimaging that constructs an acyclic directed graph, in

which nodes represent processing commands that need to be executed

(the steps of the pipeline), while the edges represent inputs and outputs

being passed between nodes (images or text files). In this formalization

of a neuroimaging pipeline as a graph, the fastest order for execution

across multiple processor cores can be determined.

The workflow graphs are modular and scalable, which means they

can be nested and extended. HALFpipe uses the workflows defined by

fMRIPrep and then connects these outputs to additional workflows.

fMRIPrep itself is modular and divided into multiple workflows:

sMRIPrep (Esteban, Markiewicz, Blair, Poldrack, & Gorgolewski, 2021),

SDCFlows (Esteban, Markiewicz, Blair, Poldrack, & Gorgolewski, 2020),

NiWorkflows (Esteban, Markiewicz, Esteban et al., 2021), and

NiTransforms (Goncalves et al., 2021). The workflow graph facilitates

saving and verifying intermediate results, and supports the user's abil-

ity to stop and later restart processing. HALFpipe also uses the graphs

to determine which intermediate results files are not needed by sub-

sequent commands by using a tracing garbage collection algorithm

(Dijkstra, Lamport, Martin, Scholten, & Steffens, 1978). As such, inter-

mediate files do not accumulate on the storage device. This feature is

implemented as a plugin to Nipype.

Nipype forms the basis of fMRIPrep and C-PAC, which are widely

used in the neuroimaging community. However, it has several limita-

tions that are relevant in the context of HALFpipe. HALFpipe is able to

calculate features and statistical maps with different variations of

preprocessing settings. To do this efficiently, intermediate results

need to be re-used whenever possible. An improved second version

of Nipype is currently being developed, called Pydra (Jarecka

et al., 2020), which will be able to automatically detect repetitive

processing commands, and automatically re-use outputs. Presently,

until Pydra becomes available, HALFpipe calculates a four-letter hash

code that uniquely identifies each pre-processing step. Before con-

structing a new pre-processing command, HALFpipe checks whether

its hash has already been added to the graph. If present, the existing

command is re-used, significantly reducing processing times in the

context of multiverse analysis or pipeline comparison.

To illustrate the benefits of this approach participant 01 of a face

matching task data set (Wakeman & Henson, 2015) was entered into

HALFpipe and task contrasts were calculated with three pipelines. For

the first pipeline, we used the recommended settings from Table 3. For

the second and third pipelines, we used the same settings but disabled

ICA-AROMA. For the second pipeline we additionally added the motion

parameters to the task model as confound time series. The third pipe-

line did not include any denoising or confound time series removal. The

naive approach is to run HALFpipe three times, once for each pipeline.

This approach is sub-optimal, as many duplicate computations are per-

formed. By default, HALFpipe combines all three pipelines using the

hashing approach described above, making processing much faster.

Processing was performed on an AMD Ryzen Threadripper 2950X

16-core processor, and each run of HALFpipe was configured to use all

cores. Table 2 shows the processing time (wall clock time) spent on each

pipeline. For the naive approach, we also show the total time.

Another key requirement of HALFpipe was robust and flexible

handling of missing data. For instance, a missing functional scan or

statistical map does not cause HALFpipe to fail. In addition, HALFpipe
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defines inclusion and exclusion criteria for scans, such as the maxi-

mum allowed motion (mean framewise displacement) or a minimum

brain coverage when extracting a brain region's average signal. Finally,

depending on the data set, statistical maps may need to be aggregated

across runs or sessions within single subjects before a group-level

model can be run. This means that the static graph has to be modified

dynamically to adapt to the results of processing. HALFpipe solves this

problem by defining a data structure that not only contains the file

names of statistical maps, but also the tags and metadata that can be

used to adjust processing on the fly. For example, using this data

structure, design matrices can be constructed for group models based

on the actual subjects that have statistical maps available.

2.6 | Preprocessing

Main preprocessing is done in HALFpipe with fMRIPrep, which per-

forms a consensus of preprocessing steps required for any fMRI study

(Esteban, Markiewicz, et al., 2019). Consensus steps for structural

images include skull stripping, tissue segmentation, and spatial normal-

ization. Consensus steps for functional images include motion correc-

tion, slice time correction, susceptibility distortion correction,

coregistration, and spatial normalization (Figure 1).

HALFpipe defines standard space as the MNI152NLin2009cAsym

template, which is the most current and detailed template available

(Horn, 2016). Note that the standard space template is not

user-configurable, so that any outputs generated by one version of

HALFpipe can be easily compared to outputs generated by another

version of HALFpipe.

Once the fMRI data have been processed with fMRIPrep and res-

ampled into standard space, HALFpipe implements a number of addi-

tional preprocessing steps for denoising, filtering, and harmonizing the

functional data (see also Figure 1):

1. ICA-AROMA is an algorithm based on independent component

analysis. It classifies components into those that contain signal

F IGURE 1 HALFpipe workflow.
HALFpipe is configured in a user interface
where the user is asked a series of
questions about their data and the
processing steps to perform. Data are
then converted to BIDS format
(Gorgolewski et al., 2016) to allow
standardized processing (white). After
minimal preprocessing of the structural
(blue) and functional (green and orange)
data with fMRIPrep (Esteban, Blair,
et al., 2019), additional preprocessing
steps can be selected (red). Using the
preprocessed data, statistical maps can be
calculated during feature extraction
(turquoise). Finally, group statistics can be
performed (yellow). Note that not all
preprocessing steps are available for each
feature, as is outlined in Table 3. The
diagram omits this information to increase
visual clarity
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and those that are noise (Pruim et al., 2015). To accomplish this,

ICA-AROMA relies on reference templates defined in MNI152-

NLin6Asym space, which is different from the standard space

template MNI152NLin2009cAsym that is used by fMRIPrep. To

allow ICA-AROMA to run, it is thus necessary to provide the

preprocessed image not just in the default template space, but

also in the one required by ICA-AROMA. By default, fMRIPrep will

estimate a second normalization to this other template, apply it to

the fMRI image in native space, and run ICA-AROMA on the

resulting image (Ciric et al., 2021). This approach effectively dou-

bles the processor time spent on spatial normalization, and may

require manually checking both spatial registrations.

To avoid this considerable effort, HALFpipe implements a differ-

ent approach by using an existing warp between the two standard

template spaces (Horn, 2016). This predefined warp is

concatenated with the normalization that was already estimated

by fMRIPrep, and then a second round of resampling is performed

with fMRIPrep's bold_std_trans_wf. This way, only the resampling

step needs to be run twice.

Finally, Independent component analysis-based automatic

removal Of motion artifacts (ICA-AROMA) is run on the resulting

fMRI image in MNI152NLin6Asym space using fMRIPrep's

ica_aroma_wf workflow, which also includes spatial smoothing

fixed to a 6 mm FWHM smoothing kernel. The resulting classifi-

cations are kept for step 4.

2. HALFpipeimplements spatial smoothing using AFNI's 3dBlurTo Full

Width at Half Maximum (FWHM) (Friedman, Glover, Krenz, &

Magnotta, 2006). Each voxel's signal is averaged with the signal of

surrounding voxels weighted by an isotropic Gaussian kernel. At the

edges of the brain, this kernel may include nonbrain voxels, so

smoothing is constrained by the brain mask. This is equivalent to the

procedure in the Minimal Preprocessing Pipelines for the Human

Connectome Project (Glasser et al., 2013). In addition, 3dBlurToFWHM

estimates the smoothness of the resulting image, and iteratively

decreases the amount of smoothing so that the resulting smoothness

matches the user setting. This way, differences in the intrinsic

smoothness between datasets (e.g., due to different voxel sizes) can

be harmonized.

3. Grand mean scaling sets the image mean, defined as the within-

scan mean across all voxels and time points, to a predefined value.

The grand mean is closely related to scanner parameters such as

RF power or amplifier gain but not to neural mechanisms

(Gavrilescu et al., 2002). Adjusting the grand mean via scaling

makes analysis results more interpretable and comparable across

subjects, sessions, and sites. The scaling factor is calculated based

on the masked functional image, and applied to both the fMRI data

and the confound time series extracted by fMRIPrep.

4. If selected, the previously estimated ICA-AROMA noise compo-

nents are removed from the smoothed and grand-mean-scaled

fMRI data. This is performed in a nonaggressive way to minimize

removing variance that is shared between signal and noise com-

ponents. ICA-AROMA implements this step using the FSL com-

mand fsl_regfilt, which calculates an ordinary least squares

regression for each voxel, where the design matrix includes both

the signal and the noise components as regressors. This means

that the resulting regression weights reflect the unique variance

of the noise components (and not the shared variance with signal

components). Then, the noise component regressors are multi-

plied by their regression weights and these products are added

together to yield one time series of the noise. Subtracting the

noise from the voxel time series yields a denoised time series (the

regression residuals). This step is done using a custom re-

implementation of fsl_regfilt in HALFpipe using Numpy (Harris

et al., 2020).

5. Temporal filtering can be selected to remove low-frequency drift

via a high-pass filter, high-frequency noise via a low-pass filter, or

both at the same time using a band-pass filter. HALFpipe imple-

ments two approaches to temporal filtering, a frequency-based

approach (Jo et al., 2013) and a Gaussian-weighted approach

(Marchini & Ripley, 2000). The frequency-based temporal filter is

very exact in selecting frequencies to be kept or removed, and is

commonly used to calculate fractional amplitude of LFF (fALFF)

and regional homogeneity (ReHo). The Gaussian-weighted tempo-

ral filter is the default used by FSL Feat (Jenkinson et al., 2012) and

may have fewer edge effects at the start and end of the time

series. However, its spectrum also has a more gradual roll-off,

meaning that it will be less aggressive in removing frequencies

close to the chosen cutoff value.

Importantly, HALFpipe runs fMRIPrep with small modifications. For

instance, we disabled fMRIPrep's experimental susceptibility distortion

correction in the absence of field maps, because it is not yet validated.

Furthermore, HALFpipe suggests default settings for each

preprocessing step, which are outlined in Table 3. Note that some are

selected based on best-practices in the field (i.e., band-pass temporal

filter for ALFF and ReHo), whereas most default settings can be

adjusted by the user. Last, HALFpipe does not output preprocessed

and normalized functional images by default, because they use a lot of

disk space. However, in the user interface users can manually choose

to output a preprocessed functional image with their choice of

preprocessing settings.

2.7 | Confound time series removal

fMRIPrep not only outputs a preprocessed image in standard space

but also a spreadsheet with confound time series named confounds.

tsv. These include the (derivatives of) motion parameters (squared),

aCompCor components (Behzadi, Restom, Liau, & Liu, 2007), white

matter signal, CSF signal, and global signal. A key consideration needs

to be made when using fMRIPrep confound time series in conjunction

with the preprocessing steps outlined in the previous section: Using

confound time series as nuisance regressors with data that was tem-

porally filtered or denoised can re-introduce the removed temporal or

noise signals back into the voxel time series (Hallquist, Hwang, &

Luna, 2013).
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An example of this phenomenon may be regressing out a set of

fMRIPrep confound time series after removing low-frequency drift via

temporal filtering. In practice, this means setting up a regression

model for each voxel, where the voxel time series is the dependent

variable and the regressors are the confound time series. The regres-

sion will yield a weight for each confound time series, so that the total

model explains the maximum amount of variance (under assumption

of normality). After multiplying the confound time series with these

weights, their products are summed to one time series containing the

confound-related signal in that voxel. This time series is then sub-

tracted from the original voxel time series to get the result (i.e., the

regression residuals). However, if the confound time series happen to

contain any low-frequency drift, then their weighted sum likely will as

well. It follows that subtracting a time series with temporal drift from

the temporally filtered voxel data will re-introduce temporal drift,

independent of whether a temporal filter was applied before.

In HALFpipe, any (optional) denoising or filter applied to the voxel

time series is also applied to the fMRIPrep confound time series. This

way, previously removed variance is not re-introduced accidentally,

because it has been removed from both sides of the regression equa-

tion. For example, when the user chooses to perform ICA-AROMA

denoising, then the same denoising will be applied to the time

fMRIPrep confound time series, and the same applies when using a

temporal filter. Note that this means that the confound time series

generated by HALFpipe will be different from the original fMRIPrep

confound time series, and users should take care to use the appropri-

ate file when running custom analyses.

2.8 | Quality assessment

Assessing the quality of data and preprocessing is a laborious undertak-

ing and often performed manually. Efforts to automate this process,

either through predefined thresholds of image quality features (Alfaro-

Almagro et al., 2018) or machine learning (Esteban et al., 2017) are not

yet ready to replace the eyes of a trained researcher checking the data.

However, various approaches make this process easier. First, rather

than viewing three-dimensional neuroimaging files directly, generating

and viewing reports containing two-dimensional images offers a signifi-

cant time savings. Second, tools such as slicesdir (in FSL), fMRIPrep, and

MRIQC generate HTML files that contain multiple report images and

can be explored in a web browser. MRIQC also provides an interactive

widget to rate the quality of each image (Esteban, Blair, et al., 2019).

In HALFpipe, we use a fixed set of processing steps for quality

assessment. While slicesdir allows the researcher to easily compare

the same image type across different subjects, it cannot be used to

generate reports for all types of images. By contrast, fMRIPrep/MRIQC

HTML files have a broad range of information and quality report

images included, but one HTML file is always specific to one subject.

As such, examining multiple processing steps in many subjects can be

cumbersome.

To overcome these issues, HALFpipe provides an interactive web

app that is contained in a single HTML file. The app dynamically loads

reports with images, and can handle datasets up to thousands of

images without a performance penalty. The images can be sorted both

by subject, as is done by fMRIPrep/MRIQC, or by image type, as is per-

formed in slicesdir. Each image can be rated as either good, uncertain,

or bad. Predefined logic automatically converts these ratings into

inclusion/exclusion decisions for HALFpipe's group statistics. In addi-

tion, tagging images as uncertain enables users to efficiently retrieve

and discuss these with a colleague or collaborator, after which a defin-

itive decision on image quality can be made.

2.9 | Group statistics

HALFpipe uses FSL FMRIB Local Analysis of Mixed Effects (FLAME,

Woolrich, Behrens, Beckmann, Jenkinson, & Smith, 2004) for group

statistics, because FLAME considers the within-subject variance of

lower level estimates in its mixed-effects models. In addition, its esti-

mates are conservative, which means they offer robust control of the

false positive rate (Eklund, Nichols, & Knutsson, 2016).

A common issue in fMRI studies is that the spatial extent of

brain coverage may differ between subjects. A common choice is

to restrict higher-level statistics to only those voxels that were

acquired in every subject. However, with a large variation in brain

coverage, which is to be expected when pooling multi-cohort

data, sizable portions of the brain may ultimately be excluded

from analysis. To circumvent this issue, HALFpipe uses a re-

implementation of FLAME in Numpy (Harris et al., 2020). In this

implementation, a unique design matrix is generated for every

voxel so that only subjects who have a measurable value for a

given voxel are included. Then, the model is estimated using the

FLAME algorithm. This list-wise deletion approach depends on

the assumption that voxels are missing completely at random

(MCAR), meaning that the regressors (and thus statistical values)

are independent of scanner coverage.

For group models, users can specify flexible factorial models that

include covariates and group comparisons. By default, missing values

for these variables are handled by list-wise deletion as well, but the

user may alternatively choose to replace missing values by zero in the

demeaned design matrix. The latter approach is equivalent to imputa-

tion by the sample mean. Design matrices for the flexible factorial

models are generated using the Python module Patsy (Smith

et al., 2018). Contrasts between groups are specified using the

lsmeans procedure (Lenth, 2016).

2.10 | Running on a high-performance cluster

Deploying Nipype to perform computations on multiple nodes, such as

on a high-performance cluster (HPC) is particularly challenging. By

default, Nipype submits a separate job to the cluster queue for each

processing command (graph node) regardless of the amount of time

required to execute the command. A watcher process running on the

head node collects outputs from completed commands and submits
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the next processing command. This process can be inefficient on

some HPCs because computational resources need to be allocated

and deallocated continually. We implemented a more efficient

approach for HALFpipe that partitions the processing graph into many

independent subgraphs, which the user may submit as separate jobs.

The smallest granularity available is one subgraph per subject that is

invoked automatically with the command line flag—use-cluster. A

Nipype workflow is created and validated for all subjects before the

pipeline starts running. In a cluster setting, the most efficient resource

utilization is to submit each subject as a separate job and to run each

job on two CPU cores.

2.11 | Procedure

HALFpipe starts up as a terminal-based user interface that prompts

the user with a series of questions about the dataset being analyzed

and the desired analysis plan. The main stages of HALFpipe analysis,

which are detailed below, include loading data, preprocessing with

fMRIPrep, quality assessment, feature extraction, and group-level sta-

tistics. Users have the flexibility to specify the settings for each

processing stage at one time or separately at each stage. If HALFpipe

is stopped and resumed at an intermediate stage, HALFpipe will detect

which stages have been completed and ask the user to indicate fur-

ther analyses that are desired. For instance, the user can request

preprocessing and feature extraction, but not group-level statistics,

and later resume processing specifying group-level statistics only.

2.12 | Loading data

A major advantage of HALFpipe is that it accepts input data organized

in various formats without the need for file naming conventions or a

specific directory structure. Using the terminal interface, the user is

asked to provide the location of the T1-weighted and fMRI BOLD

image files, which are required for preprocessing, as well as field maps

and task event files if available or applicable. However, HALFpipe

requires additional information linking the image files to run in an

automated fashion, such as information specifying which set of

images belong to the same subject.

Through the use of path templates, HALFpipe can handle a wide

range of folder structures and data layouts. The syntax for path tem-

plates is adapted from C-PAC's data configuration (Giavasis, Pellman,

Clucas, & Lurie, 2020). Instead of manually adding each input file for

each subject separately, as is performed in the SPM or FSL user inter-

faces, the template describes the pattern used for naming files. That

pattern can match many file names, thereby reducing the amount of

manual work for the user. For example, when placing the tag {subject}

in the file path {subject}_t1.nii.gz, all files of which the name ends in

_t1 and have the extension .nii.gz will be selected. The part of the

filename that comes before _t1 is now interpreted by the parsing algo-

rithm as the subject identifier. When multiple files from different

modalities have the same subject identifier, or session number, and so

on, they will be matched automatically by these tags. Automated

processing workflows can then be constructed around the resulting

data structure.

In contrast to C-PAC's data configuration syntax, HALFpipe path

templates use BIDS tags (Gorgolewski et al., 2016). HALFpipe path

templates can be further specified by adding a colon and a regular

expression after the tag name (as in standard Python regular expres-

sion syntax). For example, {subject:[0–9]} will only match subject iden-

tifiers that contain only digits. This can be useful for more complex

data layouts, such as when multiple datasets are placed in the same

directory, and only a single subset is to be used. For more examples,

see Table 4.

In the HALFpipe user interface, the user receives feedback on

how many and which files are matched, so that the path templates

can be entered interactively. Importantly, after finishing the configura-

tion process via the user interface, all files are internally converted

into the standardized BIDS structure, which is a prerequisite for run-

ning fMRIPrep. However, no copies of files are made, the conversion is

based entirely on symbolic links (aliases) to the original files. If the

data are already in BIDS format, HALFpipe will still carry out this con-

version for consistency. The resulting dataset in BIDS format is then

stored in the working directory in a subfolder called rawdata.

2.13 | Quality assessment

Quality assessment can be performed in an interactive, browser-

based user interface (see Figure 2). HALFpipe provides a detailed

user manual for quality assessment that is linked on the web page.

The web app shows report images of several preprocessing steps

such as T1 skull stripping and normalization, BOLD tSNR, motion

confounds, ICA-based artifact removal, and spatial normalization

(see the methods section on Quality assessment). These images can

TABLE 4 Examples of path template syntax

Example 1 Example 2

Path

template

data/{subject}/

bold_rest.nii.gz

data/subject

{subject}/bold_

{task}.Nii.Gz

Matches

these files

data/subject01/

bold_rest.nii.gz

data/subject02/

bold_rest.nii.gz

data/subject03/

bold_rest.nii.gz

data/phantom/

bold_rest.nii.gz

data/subject01/

bold_rest.nii.gz

data/subject02/

bold_rest.nii.gz

data/subject03/

bold_rest.nii.gz

data/subject01/

bold_task.nii.gz

Does not

match

Data/subject01/

bold_task.Nii.Gz

Data/subfolder/

subject01/

bold_rest.nii.gz

data/phantom/

bold_rest.nii.gz

data/subfolder/

subject01/

bold_rest.nii.z

Note: The undelined text shows the part of the file name that is

responsible for matching/not matching.
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be visually inspected and rated by the viewer as either good, uncer-

tain, or bad.

Ratings will be saved in the local browser storage. Once com-

pleted, they can be downloaded in JSON format to be read by HAL-

Fpipe. If placed in the working directory, ratings will be automatically

detected by HALFpipe and used to exclude subjects for group-level

statistics. In addition, HALFpipe will automatically detect all other

JSON files whose names start with exclude, to accommodate quality

assessment by multiple researchers. In the case of conflicts between

ratings, the lower rating will be used.

HALFpipe will include as much data as possible while excluding all

scans rated as “bad.” Ratings of “good” and “uncertain” will be included

for group analysis. A “bad” rating for any report image related to struc-

tural/anatomical processing will exclude the entire subject. A “bad” rat-

ing for any report image related to functional image processing will only

exclude the specific functional scan. This means that if a subject has one

“bad” scan, its other scans may still be included for group statistics.

In addition, the mean framewise displacement, percentage of

frames with a framewise displacement above a specified threshold,

percentage of the independent components that were classified as

noise, and mean gray matter tSNR from all subjects is displayed in box

plots. Next to the report images, links to the source images are shown

so that these can be inspected in more detail by opening them in a

preferred image viewer (e.g., fsleyes).

F IGURE 2 Quality assessment user interface. The top panel shows the charts view, containing one chart for processing status, one for quality
ratings and one for image quality metrics. In the top left corner, the navigation menu is open, which shows the option to export ratings for use in group
statistics. The bottom panel contains a screenshot of the explorer view that allows the user to navigate across subjects and image types. The explorer

view shows the currently selected report image on the right, along with its rating, related images, and the source files that were used to construct it. By
clicking on the image, or selecting the report detail view in the navigation menu, the image can be zoomed and panned using the mouse
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Images can be zoomed by clicking them. For faster operation by

advanced users, rating, and navigation are accessible not just via user

interface buttons, but also via keyboard shortcuts based on the

WASD keys. Pressing the A goes back one image and D goes ahead,

whereas W, S, and X rate an image as good, uncertain, or bad, respec-

tively. The web app offers an overview chart that indicates subjects

preprocessed successfully and subjects with errors, a chart with qual-

ity ratings, and box plots reflecting the sample distributions for

motion, noise components, and temporal signal-to-noise ratio (tSNR).

All three are implemented so that users can hover over chart elements

with their cursor to view meta-information, such as the subject identi-

fier, and click to navigate to the associated report images. The HTML

file is built as a frameworkless web app using TypeScript. Source code

is available at https://github.com/HALFpipe/QualityCheck.

HALFpipe shows two report images for each subject on structural/

anatomical processing and four additional images for each type of func-

tional scan. Detailed explanations may be found in the quality assess-

ment manual at https://github.com/HALFpipe/HALFpipe#quality-

checks.

1. T1w skull stripping shows the bias-field corrected anatomical

image overlaid with a red line that outlines the brain mask. The

user must check that no brain regions are missing from the mask,

and that portions of the skull or head are not included in the mask.

2. T1w spatial normalization shows the anatomical image resampled

to standard space overlaid with a brain atlas in standard space. The

user needs to check whether the regions of the atlas closely match

the resampled image.

3. Echo planar imaging (EPI) tSNR shows the temporal signal-to-noise

ratio of the functional image after preprocessing using fMRIPrep.

The user must check that signal recovery is distributed uniformly

throughout the brain, and exclude scans with asymmetry, distor-

tions, localized signal drop-out, or striping artifacts.

4. EPI Confounds shows the carpet plot (Aquino, Fulcher, Parkes,

Sabaroedin, & Fornito, 2020; Power, 2017), generated by

fMRIPrep. A carpet plot is a two-dimensional plot of time series

within a scan, with time on the x-axis and voxels on the y-axis.

Voxels are grouped into cortical gray matter (blue), subcortical gray

matter (orange), cerebellum (green), and white matter and cerebro-

spinal fluid (red). Above the carpet plot are time courses (x-axis) of

the magnitude (y-axis) of framewise displacement (FD), global sig-

nal (GS), global signal in CSF (GSCSF), global signal in white matter

(GSWM), and DVARS, which is the temporal change in root-mean-

square intensity (D being the temporal derivative of time courses

and VARS the root-mean-square variance over voxels). The user

must look for changes in heatmap/intensity in relation to motion

and signal changes above. Abrupt changes in the carpet plot may

correspond to motion spikes, whereas extended signal changes

may indicate acquisition artifacts caused by defective scanner

hardware.

5. EPI ICA-based artifact removal shows the time course of the mean

signal extracted from each ICA-component and its classification as

either signal (green) or noise (red). This figure is generated by

fMRIPrep. For each component, there is a spatial map (left), the

time series (top right) and the power spectrum (bottom right). The

user must check that components classified as noise do not con-

tain brain networks or temporal patterns that are known to be

signal.

6. EPI spatial normalization shows the functional image after

preprocessing using fMRIPrep overlaid with a brain atlas in stan-

dard space. As before, the user must check whether the regions of

the atlas closely match the resampled image.

2.14 | Feature extraction

Following preprocessing, HALFpipe can extract several features that

are commonly used in resting-state and task-based analysis. These

include various ways of examining functional connectivity between

brain regions (seed-based connectivity, network-template (or dual)

regression, atlas-based connectivity matrices), as well as measures of

local activity (ReHo, fALFF). HALFpipe allows the user to choose sev-

eral region-of-interest masks (seeds), template networks, and atlases,

for which a threshold indicates the minimum overlap the user requires

between seeds, template networks, or atlas regions and the subjects'

fMRI data. For each feature, the user can change the default settings

for spatial smoothing and temporal filtering, and choose the con-

founds to be removed. The user is offered the option to extract the

same feature multiple times, each time varying the preprocessing,

confound, and denoising settings to explore the impact of analytical

decisions in a multiverse analysis. Of note, for selected features, some

options are not available. For example, spatial smoothing is disabled

for atlas-based connectivity matrices (Alakörkkö, Saarimäki, Glerean,

Saramäki, & Korhonen, 2017), or performed after ReHo and fALFF

have been calculated (see Table 3).

A brief description of the features is provided in Box 1.

2.15 | Group-level statistics

Group-level statistics on individual features can be performed with

FSL's FLAME algorithm. Subjects who had poor quality data in the

interactive quality assessment are excluded. In addition, subjects can

be excluded based on movement by selecting the maximum allowed

mean framewise displacement (FD) and percentage of outlier frames

(i.e., frames with motion higher than the specified FD threshold).

For group-level statistics, users can choose to calculate the inter-

cept only (i.e., mean across all subjects) or run flexible factorial models.

For the latter, HALFpipe prompts the user to specify the path to a

covariates file (multiple file formats are supported) containing subject

IDs, group membership, and other variables, and to specify whether

these are continuous or categorical. Missing values in the covariates

file can be handled with either listwise deletion or mean substitution.

The user can specify main effects and interactions between variables,

while within-group regressions against a continuous variable

(e.g., symptom severity) is also possible.
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2.16 | Outputs

After computation finishes, all outputs are accessible in the working direc-

tory. The outputs of fMRIPrep are stored in derivatives/fmriprep folders,

similar to when fMRIPrep had been run outside of HALFpipe. The deriva-

tives folder also contains the folder halfpipe which contains any

preprocessed images and features that were generated. Just like the

fmriprep folder, the halfpipe folder conforms to the BIDS standard for

derived datasets (BIDS contributors, 2021). This means that all file names

contain structured information such as subject ID sub-01 or the name

given to the feature feature-seedConn in a standardized way that may be

different from the original file naming. Underscores, dashes, and other

nonalphanumeric characters are removed from the subject ID, session

IDs, and so on. for compliance with BIDS. HALFpipe's standardized output

file namingmeans that additional analysis steps can be automated easily.

The outputs from group statistics are placed in a similar folder

structure that make it easy to share summary statistics for collabora-

tive meta-analysis projects.

3 | DISCUSSION

Large samples are essential for recent neuroimaging applications, such

as imaging-genetics association studies, training of complex machine

learning models, and even unsupervised learning. This demand has

stimulated efforts to pool data from multiple observational studies,

which typically incur greater bias than studies designed a priori to

address a specific scientific question. Within ENIGMA, we developed

HALFpipe to support the harmonization of task-based and resting-

state fMRI data analysis and quality assessment across multiple labs

and cohorts. HALFpipe bundles all software tools, library functions,

and other dependencies by containerizing the requisite components

in a Singularity (Kurtzer, Sochat, & Bauer, 2017) and Docker (Docker

Inc.) release. Containerization ensures that all software dependencies

and the runtime environment are provided. Therefore, containerized

software such as HALFpipe can run reliably regardless of the comput-

ing environment where it is installed, be it a laptop, computational

cluster, or cloud computing service (Grüning et al., 2018).

The design, implementation, and testing of the HALFpipe

workflow resulted in its 1.0 version release in early 2021. Several

thousand resting-state fMRI datasets from 29 ENIGMA PTSD consor-

tium sites have already been analyzed as part of the first published

report to employ HALFpipe (Weis, 2020), while analyses of other large

multi-site datasets are currently underway in several ENIGMA work-

ing groups, including the ENIGMA task-based fMRI working group

(Veer et al., 2019). Running HALFpipe requires approximately 8–

20 GB of RAM per computer or cluster node and 6–10 hours to com-

plete on a single processor core. The exact resource usage depends

on voxel resolution and the number of volumes in the fMRI data. The

number of features the user chooses has a negligible impact on

processing time.

The HALFpipe user experience includes an interactive user inter-

face to facilitate rapid analysis prototyping while preserving the ability

Box 1 Overview of HALFpipe features

Task-based activations A first-level general linear model

(GLM) is run for event-related or block designs. GLM regres-

sors describing the stimulus presentations for each of the

task conditions are convolvedwith a double GammaHRF and

the overall model is fit for each voxel in the brain using FSL

FILM (Woolrich, Ripley, Brady, & Smith, 2001). Contrasts of

interest are tested, which results in a whole-brain task activa-

tionmap for comparisons between task conditions.

Seed-based connectivity Average BOLD time series are

extracted from a seed region of interest (ROI), which is defined

by a binary mask image. This time series is used as a regressor

in a first-level GLM, where the model is fit for each voxel in the

brain using fsl_glm. This results in a whole-brain functional con-

nectivity map that represents the connectivity strength

between the ROI and each voxel in the brain.

Network-template (or dual) regression Subject-specific

representations of connectivity networks (e.g., default

mode, salience, task-positive networks) are generated using

dual regression (Beckmann, Mackay, Filippini, &

Smith, 2009) with fsl_glm. In a first regression model, the set

of network template maps is regressed against the individual

fMRI data, which generates time series for each of the tem-

plate networks. Next, a second regression model is run,

regressing the network time series against the individual

fMRI data. This generates subject-specific spatial represen-

tations of each of the template networks, which can be con-

sidered to represent the voxelwise connectivity strength

within each of the networks.

Atlas-based connectivity matrix Average time series are

extracted from each region of a brain atlas of choice using cus-

tom code inspired by Pypes (Savio, Schutte, Graña, &

Yakushev, 2017) andNilearn (Abraham et al., 2014). From these,

a pairwise connectivity matrix between atlas regions is calcu-

lated using Pearson product-–moment correlations using Pandas

(McKinney, 2010), which represent the pairwise functional con-

nectivity between all pairs of regions included in the atlas.

Regional homogeneity (ReHo) Local similarity

(or synchronization) between the time series of a given

voxel and its nearest neighboring voxels is calculated using

Kendall'’s coefficient of concordance (Zang, Jiang, Lu, He, &

Tian, 2004) using FATCAT’s 3dReHo, which is distributed

with AFNI (Taylor & Saad, 2013).

Fractional amplitude of low frequency fluctuations (fALFF)

Variance in amplitude of low frequencies in the BOLD signal

is calculated, dividing the power in the low frequency range

(0.01–0.1 Hz) by the power in the entire frequency range

(Zou et al., 2008) with a customized version of the C-PAC

implementation of fALFF.
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to script automated analyses of large datasets via configuration files

in JSON format with detailed prescriptions of the dataset, analyses

steps, and input parameters. Importantly, HALFpipe accommodates

concurrent harmonized processing of task-based and resting-state

fMRI data, which facilitates cross-modal comparisons between the

two fMRI modalities (e.g., Kerestes, Chase, Phillips, Ladouceur, &

Eickhoff, 2017).

Our implementation of HALFpipe enables users to tackle consor-

tium analyses of multi-cohort fMRI data with highly uniform applica-

tion of methods. Specifically, we have established a standardized

process and analysis methodology that involves a pre-specified:

(a) ensemble of software tools, (b) software version for each tool,

(c) set of user-defined parameters, (d) sequence of analytic steps,

(e) quality assessment process, and (f) criteria for excluding substan-

dard data. Thus, HALFpipe promotes the seamless implementation of a

standardized process (preprocessing and feature extraction) at each

site and/or cohort prior to initiating group level statistics. Such capa-

bilities hold the promise of significantly advancing basic neuroscience,

and particularly clinical neuroscience, by supporting the execution of

multi-site multi-cohort studies of several hundred or several thousand

samples—ultimately supporting harmonized cross-disorder compari-

sons. While not part of the HALFpipe workflow, cross-site/platform

harmonization techniques for neuroimaging have recently experi-

enced a dramatic increase (Fortin et al., 2018; Pezoulas, Exarchos, &

Fotiadis, 2020; Wachinger et al., 2021). Much of this methodological

innovation has arrived on the heels of earlier developments in cross-

platform harmonization of genetic data (Borisov et al., 2019;

Haghverdi, Lun, Morgan, & Marioni, 2018; Johnson, Li, &

Rabinovic, 2007; Pontikos et al., 2017). These advances in harmoniza-

tion of neuroimaging data are expected to manifest synergy with stan-

dardized workflows such as HALFpipe, as both elements are essential

to large-scale imaging consortium efforts (Thompson, Jahanshad,

et al., 2020).

The implementation of quality metrics for fMRI data has been an

incremental process that has moved steadily toward establishing

empirically-informed best practices. Historically, quality criteria have

been applied unevenly across research labs. Recent years have

witnessed a heightened awareness about the essential role of apply-

ing systematic and principled quality metrics to minimize confounds,

for example, motion artifacts (Murphy, Birn, & Bandettini, 2013;

Power et al., 2014; Power, Barnes, Snyder, Schlaggar, &

Petersen, 2012), and widespread fMRI signal deflections (Aquino

et al., 2020). Automated quality control methods are being devel-

oped and adopted with increasing interest, such as the MRI Quality

Control software MRIQC (Esteban et al., 2017). HALFpipe has

adopted parts of the functionality of MRIQC with an enhanced user

experience that generates quality reports via a web-browser-based

interface to facilitate rapid viewing, screening, and selection of indi-

vidual subject data for inclusion or exclusion. The application of uni-

form quality assessment procedures is particularly important when

mega-analyzing and even meta-analyzing multi-site/scanner data, as

is performed in ENIGMA. That is, study variables that segregate by

site are more likely to lead to confounds without the uniform

implementation of quality assessment across sites (e.g., Wachinger

et al., 2021). With its harmonized quality procedures, HALFpipe aims

to minimize such effects.

3.1 | Limitations

Computing platforms that are likely to differ between sites are known

to introduce subtle differences in output attributable to operating sys-

tems and hardware (Gronenschild et al., 2012). Collecting raw multi-

site data at one central site prior to HALFpipe processing ensures that

the same computing platform can be used to process all data. While

optimal, this is often not practical due to restrictions on data sharing,

even when the data is completely de-identified (i.e., when linking data

to protected health or other sensitive information is no longer

possible).

HALFpipe offers harmonization through uniform processing of

fMRI data, but other sources of nonuniformity are beyond its scope.

Recent advances in cross-site/platform harmonization may addition-

ally correct for differences in site, scanner hardware, or computation

on different processors (Fortin et al., 2018; Pezoulas et al., 2020;

Wachinger et al., 2021). Such methods could be applied to extracted

HALFpipe features, either centralized or through distributed computa-

tion using tools such as COINSTAC (Plis et al., 2016), to yield results

that are potentially more generalizable.

4 | CONCLUSION

HALFpipe provides a standardized workflow that encompases the

essential elements of task-based and resting-state fMRI analyses,

builds on the progress and contributions of fMRIPrep developers, and

extends capabilities beyond preprocessing steps with a diverse set of

post-processing functions. HALFpipe represents a major step toward

addressing the reproducibility crisis in functional neuroimaging by

offering a workflow that maintains details of user options, steps per-

formed in analyses, metadata associated with analyses, code transpar-

ency, containerized installation, and the ability to recreate the runtime

environment, while implementing empirically-supported best-

practices adopted by the functional neuroimaging community.
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