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Executive Summary

This report outlines the development of our validated model designed for estimat-
ing dynamic networks of personal emotions over time. This model is suitable for
data collected through ecological momentary assessment. A considerable portion of
this document served as the supplementary material for WP1’s methodological pa-
per, Intraindividual Time-varying Dynamic Network of Affects: Linear Autoregressive Mixed-
Effects Models for Ecological Momentary Assessment, which can be accessed online at
doi.org/10.3389/fpsyt.2024.1213863.

The foundational theories and detailed explanations regarding data type construction
and functional tools were previously documented in deliverable D1.2. However, we
present an updated version of this material here for the sake of completeness. Addition-
ally, we introduce new sections addressing the impact of missing values, scaling up to
higher dimensions, and a practical application scenario where both the full and reduced
models are fitted to data obtained from a participant in the DynaM-INT study.

Furthermore, we provide software components that illustrate the data generation process
and offer a step-by-step guide to fitting the model. For fitting mixed-effects models, we
utilize MixedModels.jl in the Julia programming language, and lme4 in R.

Recognizing Julia’s enhanced computational capabilities, we have implemented the tools
and conducted the analysis using the Julia language. However, acknowledging the
widespread usage of R in the field, we have also developed a user-friendly graphical
interface. This interface leverages the Shiny platform within R, providing an accessible
means of fitting real data without requiring programming skills. This interface is hosted
on a server, serving as a toolbox tailored for users with limited programming experience.

For convenience, we have made the source codes for both implementations available in
separate GitHub repositories. The following links provide access to them and the web
application.

• Julia: github.com/spooseh/MixedEffectsVAR

• Shiny, source code: github.com/spooseh/larmexShiny

• Shiny web app: spooseh.shinyapps.io/larmexShiny/
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1 Introduction

We consider simple directed networks comprising two moods and one external factors
node. The two moods interact mutually by enhancing (blue) or dampening (red) each
other under the unidirectional influence of external factors.

M1 M2

E

Figure 1: Nodes M1 and M2 interact with each other leading to temporal correlation, meaning
that the value of the source node (variable) at time t has an impact on the value of its target at
time t + 1. Looped arrows indicate autoregressive effects. Exogenous factors influence moods
at the same time in a one-way fashion. Blue and red arrows indicate activation and suppression
respectively. Different thicknesses stand for distinct interaction strengths. Dashed arrows indicate
contemporaneous effects while solid ones are indicative of possible temporal causalities.

Assuming intensive longitudinal data through Ecological Momentary Assessment
(EMA), we formalize the mathematical representation of these networks, Figure 1, by an
Exogenous Linear Autoregressive Mixed-effects model (LARMEx). The autoregressive
coefficients represent the interactions and the external factors are treated as exogenous
covariates. We let every parameter in the model have fixed and random components aim-
ing at networks that are allowed to have variable structures over reasonable units of time
like days or weeks depending on the study design. Harnessing the rich theoretical and
computational literature that furnishes classic linear mixed-effects models, we transform
this formulation to a classical one and use the existing methods and tools. We assume
our model is the true data generating process and simulate data using a predefined set
of parameters. Then we investigate the performance and feasibility of this approach in
delivering reliable estimates for different choices of the number of observations and the
intensity of noise.

2 Data generating process

Let mi,t = [m1, m2]
T
i,t be the 2× 1 vector corresponding to the mood values from the ith

day at any observation occasion t = 1, 2, . . . , ni where ni is the number of observations
per day and T denotes the transpose of a matrix.

Assuming that a collection of external factors (E) act on mood nodes and their effect could
vary between days, the evolution of mi,t is represented by a LARMEx model as

mi,t = (βar + bar
i )mi,t−1 + (βe + be

i )ei,t + (βc + bc
i ) + εi,t,

in which β and b represent the fixed and random effects (FE and RE henceforth). The
temporal (Granger-causal) connections between the moods are governed by the lag(1)
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autoregressive term, (βar + bar
i )mi,t−1. The remaining terms represent the contemporane-

ous effects of E and the constants (intercepts). For simplicity, we assume no connections
from moods to E.

3 Generating a set of known parameters

For simulating data with this model, we need to specify the parameters. To achieve repli-
cability, one can predefine a random number generator (RNG). In Julia, we implement
this using the following struct.

mutable struct parLARMEx
nAR::Int # number of temporally connected nodes
rng::AbstractRNG # one RNG for consintency
nL2Max::Int # how many RE to generate
nSamp::Int # sample size for generating REs
B_AR::Matrix{Float64} # FE autoregressive coefficients
B_E::Vector{Float64} # FE coefficients of exogenous factors
b_var::Matrix{Float64}# variance of group of RE
b_cov::Matrix{Float64}# variance-covariance matrix of RE
b_ar::Matrix{Float64} # RE for autoregressive coefficients
b_e::Matrix{Float64} # RE for exogenous coefficients
b_c::Matrix{Float64} # RE for constant terms

end

To generate instances of this struct, a constructor is implemented as

parLARMEx(;b=[], nAR=2, rng=MersenneTwister(), nL2Max=100,
nSamp=20000, B_ar=.3, B_e=.3, b_var=[.03 .03 .03])

where the keyword arguments are:

• b = []: if provided with a matrix, RE are extracted from it otherwise generated
• nAR = 2: number of temporally connected nodes
• rng = MersenneTwister(): if left out, a MersenneTwister RNG is produced anew,

otherwise a custom one should be provide for consistency and replication
• nL2Max = 100: how many RE to generate
• nSamp = 20000: initial sample size for generating RE, see genRE_CS() for explana-

tion
• B_ar = .3: absolute value of FE autoregressive coefficients, = [] for random values

between 0.1 and 0.6
• B_e = .3: absolute value of FE exogenous coefficients, = [] for random values be-

tween 0.1 and 0.6
• b_var = [.03 .03 .03]: for constructing a default variance-covariance of RE

For simplicity we restrict the fixed effects to be
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βar =

[
0.3 −0.3
−0.3 0.3

]
, βe =

[
0.3
−0.3

]
, βc =

[
0
0

]
.

These matrices are generated using keyword arguments to the constructor of parLARMEx.
It is also possible to initialize these with custom matrices or random values by passing [].
The variance-covariance of the random effects is built using b_var to be

G =



0.03 0 0 0 0 0 0 0
0 0.03 0 0 0 0 0 0
0 0 0.03 0 0 0 0 0
0 0 0 0.03 0 0 0 0
0 0 0 0 0.03 0 0 0
0 0 0 0 0 0.03 0 0
0 0 0 0 0 0 0.03 0
0 0 0 0 0 0 0 0.03


This is not the final variance-covariance of the RE, because one needs to control for the
stability of the autoregressive process. To this end, we sample a numger of nSamp = 20000
sets from a multivariate normal distribution of MVN(0, G) and retain nL2Max = 100 sets
for which the absoloute eigenvalues of βar + bar are less than one. These are stored in
b_ar, b_e, b_c, and the variance-covariance of this latter sample as b_cov.

This process is accomplished by calling the function

genRE_CS(rng,G,B_AR,maxSbj,nSamp)

inside the constructor which updates the fields corresponding to the random effects and
their variance-covariance structure. In what follows we import these and other function
definitions from the file helperSim.jl on GitHub, and then construct the parameters us-
ing a replicable RNG:

[1]: include("helperSim.jl");

[2]: rng = MersenneTwister(1984);
par = parLARMEx(rng=rng);

4 Generating data

We assume that the data generating process has a two-level structure. The multiple ob-
servations are made on level I and these are nested in level II units. For EMA data, level I
could be the daily observations, as many as nObsL1, which are nested in single days with
a total number of nL2. These characteristics together with the varianc-covariance of noise,
sigma, initial values for days, M0, and the vector of known exogenous factors, E, are stored
in another struct.

Page 4 of 14D 1.3

https://github.com/spooseh/MixedEffectsVAR


H2020 research and innovation programme DynaMORE

mutable struct simLARMEx
nAR::Int # number of temporally connected nodes
nObsL1::Int # number of observation on level I
nL2::Int # number of units on level II
sigma::Float64 # variance of noise
M0::Matrix{Float64} # initial values each day
E::Vector{Float64} # known exogenous factors

end

The constructor of this struct has the following signature,

simLARMEx(;rng=MersenneTwister(), nObsL1=10, nL2=36, sigma=.2,
M0_max=.5, E=[])

and keyword arguments as:

• rng = MersenneTwister(): feed parLARMEx.rng for consistency and replication, ini-
tialized anew by default

• nObsL1 = 10: number of observation on level I
• nL2 = 36: number of units on level II
• sigma = .02: variance of noise
• M0_max = .5: determines the amplitude of initial values and exogenous factors, 0.5

to keep trajectories mostly in [-1,1]
• E = []: known exogenous factors of size [nL2 x nObsL1], drawn randomly from [0,

M0_max] by default

The following code snippet setts up the configuration of the desired data set. The RNG
is carried over to perovide replicablity. Finally, genData() gives the simulated data along
with the noiseless data as dataframes and the signal-to-noise-ratio (SNR).

[3]: sim = simLARMEx(rng=par.rng);
simData, simData0, SNR = genData(par, sim);

[4]: # show(first(simData,5),allcols=true)
latexify(round.(simData[1:5,:],digits=2))

[4]: idL2 tL1 M1 M2 E
1 1 −0.07 0.44 0.27
1 2 −0.03 0.2 0.49
1 3 0.2 0.08 0.19
1 4 0.3 −0.04 0.23
1 5 0.19 −0.17 0.26

The returned values are

• simData: the simulated data according to the setup so far
• simData0: the simulated data without the noise component used to calculate the

SNR
• SNR: the ratio of the variance of noiseless data to that of noise
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5 Transforming to classical mixed-effects model

By stacking mood values, parameters and covariates for every day separately, and form-
ing the design matrices for fixed and random effects, X and Z, data from a single day
takes the following matrix form which is equivalent to a linear mixed effects formulation.

Yi = Xiβ + Zibi + εi.

In this formulation for a network of two moods and one external nodes one has

Yi =
[
m1,1 m1,2 . . . m1,ni m2,1 m2,2 . . . m2,ni

]T
i ,

β =
[
β11 β12 β21 β22 βe

1 βe
2 βc

1 βc
2
]T .

and

Xi = Zi =



m1,0 m2,0 0 0 e1 0 1 0
m1,1 m2,1 0 0 e2 0 1 0

...
...

...
...

...
...

...
...

m1,ni−1 m2,ni−1 0 0 eni 0 1 0
0 0 m1,0 m2,0 0 e1 0 1
0 0 m1,1 m2,1 0 e2 0 1
...

...
...

...
...

...
...

...
0 0 m1,ni−1 m2,ni−1 0 eni 0 1


i

.

In its general form, the above equation for k moods, Yi is a k(ni − 1)× 1 vector of mood
values, β is a (k2 + 2k)× 1 vector of fixed effects, bi is a (k2 + 2k)× 1 vector of random
effects, Xi and Zi are k(ni − 1) × (k2 + 2k) design matrices. The random effects bi and
residuals εi are assumed to be independent with a multivariate normal (MVN) distribu-
tion of [

bi
εi

]
∼ MVN

([
0
0

]
,
[

G 0
0 Σi

])
.

This step is done by the following function which gives another data frame suitable for
performing the estimation. Here, it is possible to introduce missing values to the analysis,
e.g. miss = .2 for a 20% of missing values at random. By default, it is assumed that there
is no missing values, miss = 0. The code is available in helperSim.jl on GitHub.

prepData2Fit(rawData, idL2, endList, exgList; miss=0)

with the following arguments:

• rawData: the simulated data as a dataframe
• idL2: the column name for level II units, e.g., an id for each day, "idL2" here
• endList: the list of temporelly connected moods, ["M1","M2"] here
• exgList: the list of exogenous factors together with the constant terms, ["E","C"]

here
• miss: the ratio of missing values, defaults to zero
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[5]: fitData = prepData2Fit(simData,"idL2",["M1","M2"],["E","C"]);
# show(first(fitData,5),allcols=true)

[6]: df = fitData[1:5,:]; df[:,3:end] = round.(df[:,3:end],digits=2);
latexify(df)

[6]: idL2 tL1 M M11 M12 M21 M22 E1 E2 C1 C2
1 2 −0.03 −0.07 0.44 0 0 0.49 0 1 0
1 3 0.2 −0.03 0.2 0 0 0.19 0 1 0
1 4 0.3 0.2 0.08 0 0 0.23 0 1 0
1 5 0.19 0.3 −0.04 0 0 0.26 0 1 0
1 6 0.65 0.19 −0.17 0 0 0.49 0 1 0

6 Setting up the formula for fitting

The prepared data has more columns representing the response variable M, and the pre-
dictors including the connections in the network M11, M12, M21, M22, E1, E2, as well
as the constant terms C1, C2. It also contains the level I time points tL1, and the level II
identifiers idL2. We provide a function in helperSim.jl, on GitHub,

setFormula(fitData)

which constructs the formula suitable to feed in the Julia package MixedModels.jl. This
function is restricted only to a dataframe which has the exact columns as shown above.

[7]: frm = setFormula(fitData);

7 Fitting

We use the MixedModels.jl package in Julia to perform the estimation. It is similar to the
lme4 in R but exhibits faster performance in our case.

[8]: fit = MixedModels.fit(MixedModel, frm, fitData, progress=false);
show(fit)

Linear mixed model fit by maximum likelihood
M ~ 0 + M11 + M12 + M21 + M22 + E1 + E2 +

(0 + M11 + M12 + M21 + M22 + E1 + E2 + C1 + C2 | idL2)
logLik -2 logLik AIC AICc BIC
246.8663 -493.7327 -407.7327 -401.4678 -215.3554

Variance components:
ColumnVariance Std.Dev. Corr.

idL2 M11 0.01 0.13
M12 0.06 0.25 +0.26
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M21 0.02 0.15 -0.50 +0.68
M22 0.04 0.21 -0.70 +0.01 +0.37
E1 0.02 0.16 +0.49 +0.27 -0.05 -0.58
E2 0.02 0.14 +0.77 +0.57 -0.11 -0.45 +0.28
C1 0.03 0.17 -0.11 +0.20 +0.41 -0.15 +0.38 -0.45
C2 0.03 0.17 +0.33 +0.03 -0.15 -0.17 -0.31 -0.01 +0.34

Residual 0.017568 0.132545
Number of obs: 648; levels of grouping factors: 36

Fixed-effects parameters:
-------------------------------------------

Coef. Std. Error z Pr(>|z|)
-------------------------------------------
M11 0.16115 0.0441711 3.65 0.0003
M12 -0.482173 0.059415 -8.12 <1e-15
M21 -0.281178 0.0449767 -6.25 <1e-09
M22 0.342208 0.0553473 6.18 <1e-09
E1 0.394389 0.0587841 6.71 <1e-10
E2 -0.254405 0.0542693 -4.69 <1e-05
-------------------------------------------

The following parameters have been estimated. It is evident that the network’s structure,
with regard to the type of connections, has been accurately reconstructed. However, the
precision of the coefficient estimations is not optimal.

β̂ar =

[
0.16 −0.48
−0.28 0.34

]
, β̂e =

[
0.39
−0.25

]
,

8 Parameter recovery

In order to assess how well one can recover the parameters, we generate data with the
following specifications:

• number of observations per day: 10
• (σ2, SNR) ∈ {(0.01, 12), (0.02, 6), (0.06, 2)}
• number of days, N ∈ {4, 6, . . . , 36}
• βar, βe and βc as before
• data is generated for one simulated subject 1000 times
• at each iteration new random effects are used

This can be done using the GitHub file, simBootstrap.jl. It uses the following function
to generate data repeatedly in a loop.

loopSim(csvDir, M0_max, sigma, n, P)

This function creates a folder called bootstrap in the current working directory and for
each noise intensity, sigma, saves the true and estimated parameters of each simulation in
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different folders, re and reh, based on the number of days as CSV files. Fixed effects and
the variances of random effects are collected in two separate CSV files.

The code could take some time, depending on the computational power. Using the esti-
mated parameters one can construct bootstrap confidence intervals for fixed effects and
the variance of random effects as well as the relative errors of the estimations. For details
regarding these analyses, please refer to the main text.

For an up-to-date version please refer to the GitHub repository. Source code for generat-
ing Figures is not provided.
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Figure 2: Fixed effects, bootstrap. Estimations of fixed effects for different levels of noise intensity
and number of days. The number of observations per day is 10. True values of parameters are
highlighted bold on x axes. For every number of days on the vertical axes, three lines are drawn
representing the bootstrap 95% confidence intervals around the median depicted by cross signs.
Every line is color- and style-coded to demonstrate one noise intensity. Data has been generated
for one simulated subject, 1000 times repeatedly, with (σ2, SNR) ∈ {(0.01, 12), (0.02, 6), (0.06, 2)}
and estimations are performed using MixedModels.jl package in Julia.

The number of observations per day is 10. True values of parameters are highlighted

Page 9 of 14D 1.3



H2020 research and innovation programme DynaMORE

bold on x axes. For every number of days at the horizontal axes, three lines are drawn
representing the bootstrap 95% confidence intervals around the median depicted by
cross signs. Every line is color-coded to demonstrate one noise intensity. Data has
been generated for one simulated subject, 1000 times repeatedly, with (σ2, SNR) ∈
{(0.01, 12), (0.02, 6), (0.06, 2)}.
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Figure 3: Variance of random effects, bootstrap. Estimations of the variance of random effects for
different levels of noise intensity and number of days. The number of observations per day is 10.
True values of parameters are highlighted bold on x axes,

√
0.03 ≈ 0.17. For every number of days

on the vertical axes, three lines are drawn representing the bootstrap 95% confidence intervals
around the median depicted by cross signs. Every line is color- and style-coded to demonstrate
one noise intensity. Data has been generated for one simulated subject, 1000 times repeatedly, with
(σ2, SNR) ∈ {(0.01, 12), (0.02, 6), (0.06, 2)} and estimations performed performed using Mixed-
Models.jl package in Julia.

True values of parameters are highlighted bold on x axes,
√

0.03 ≈ 0.17.

We compute the Relative Estimation Error (REE) in the aforementioned cases as δθ =
|θ̂− θ|/|θ| in which θ and θ̂ represent the true and estimated parameters, respectively. To
avoid computational difficulties, only random effects larger than 0.02 are considered in
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these analyses. We also report only the coefficients present in a network representation,
i.e., βar, βe, bar and be. This analysis underscores that in a mixed-effects model the predic-
tion of random effects is not as reliable as the estimation of fixed effects in terms of being
able to recover the parameters varying over days in our case. The reason is that only the
variance of random effects are present in the likelihood function and individual values
are not estimated directly.

Missing values are a common occurrence in EMA data. For our study, we consider the
presence of randomly missing values, leading to the omission of 10%, 20%, and 30% of
observations. Employing the same methodology as earlier, we replicate the analysis for
a two-variable mood network. We calculate REEs for varying numbers of days and the
three distinct levels of missing values. The collective average of these REE values is suc-
cinctly presented in Figure 4. This insight reveals a potentially nonlinear influence of
missing data, which may be attributed to the practice of listwise deletion, in conjunc-
tion with the restriction to consecutively recorded data points. As compliance rates de-
cline, the probability of consecutively recorded data instances experiences a significant
decrease. This underscores the necessity of considering imputation techniques depend-
ing on the severity of missing values.

4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
Number of days

0.0

0.2

0.4

0.6

0.8

1.0

M
ed

ia
n 
RE

E 
av

er
ag

ed
 o
ve

r a
ll 
fix

ed
 e
ffe

ct
s No missing

10% missing
20% missing
30% missing

Figure 4: Relative errors, bootstrap with missing values. Lines represent the median Relative
Estimation Errors (REE) averaged over fixed-effect parameters of a network with two mood nodes
and one node of external factors in the presence of missing values at random. Data is generated
for one simulated subject, 1000 times repeatedly, with (σ2, SNR) = (0.02, 6). We remove 10%,
20%, and 30% of the observations randomly for each case and estimations are performed using
MixedModels.jl package in Julia.

To assess the scalability of this method in higher dimensions, we simulate a network
comprising four interacting nodes—two positive and two negative valences—along with
an external factor influencing all mood variables. Figure 5 presents the REEs for this
simulation and compares them to previous results, averaging REEs across all fixed and
random effects. Notably, for a two-fold increase in the number of mood variables, REEs
for fixed effects almost double. This observation suggests that, for smaller networks,
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employing the full model might be more appropriate. However, for larger networks, it
would be advisable to opt for reduced models containing a smaller number of random
effects. Additionally, dimension reduction techniques could be applied to merge nodes
that measure similar psychological constructs.
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Figure 5: Relative errors, bootstrap. Solid and dashed lines represent the median Relative Estima-
tion Errors (REE) averaged over fixed- and random-effect parameters respectively. The results are
depicted with similar colors for networks with two and four mood nodes and one node of external
factors. Data is generated for one simulated subject, 1000 times repeatedly, with SNR = 6 for both
cases and estimations are performed using MixedModels.jl package in Julia.

9 Reduced models for empirical data

Based on our simulations, the EMA data collected in the DynaM-OBS and DynaM-INT
studies offer potential for capturing the temporal dynamics of affects, especially within
smaller networks of up to five nodes. However, our attempts to apply a multilevel
model to these data revealed sparse and weak connections between different moods, even
among respondents who exhibited a higher level of compliance. Consequently, we pro-
pose a refined model where only the average mood values are permitted to fluctuate
across days, while maintaining a constant network structure. This refinement substan-
tially reduces the number of random effects and improves model fits. Figure 6 depicts a
network of four nodes fitted to data from a participant in the DynaM-INT study with a
compliance rate of 90%. Notably, only a few edges are significantly different from zero
in both models. However, reduced models entail more connections and yield superior
model fits.
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Figure 6: A participant from the DynaM-INT study with a compliance rate of 90%. a) The full
model with a time-varying network across days. All non-zero edges are displayed. b) The reduced
model with a fixed network, where only the mean values of moods can vary over days. All non-
zero edges are depicted. c) The full model with only statistically significant edges displayed. d)
The reduced model with only statistically significant edges depicted.

10 Fitting data in R

Given that R is widely used in the field, we also provide a graphical user in-
terface as a Siny Web app that is available in a separate GitHub repository. It
is implemented as an R package to be installed locally by users and is deployed
on a server. Without going into further details we refer the interested readers to
https://github.com/spooseh/LARMExShiny for the source code. The Web application
is accessible through https://spooseh.shinyapps.io/larmexShiny/

11 Conclusion

We presented an extension of linear mixed-effects models by adding an autoregressive
component to model the network representation of mental state. Specifically, we assumed
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a simple network of two causally interacting moods under the unidirectional influence of
an external-factors node. This framework is suitable for intensive longitudinal data.

We showed briefly how this representation is mathematically formulated and detailed
the implementation of such a model in Julia. The practical implementation of data gen-
erating process was shown by explicit codes which is available on a public repository
under GitHub. We also provided exemplary code for performing a bootstrap analysis to
construct confidence intervals for the estimations. We also demonstrated how estimation
precision is affected when dealing with a missing completely at random scenario as com-
pliance rates decrease. In this analysis, missing values were addressed through listwise
deletion. Our results, indicating approximately double relative estimation errors for a
network with four nodes compared to one with two nodes, suggest cautious application
of this approach in higher dimensions.

The presence of substantial amount of missing EMA data in DynaM-OBS and DynaM-
INT exhibit higher-than-expected rates, posing challenges for model validation. Nonethe-
less, by restricting ourselves to a subset of respondents with a notable higher compliance
rates, we were able to gain insights about the validity of our model in delivering time-
varying affect networks.
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