MORE

Dyn

DynaMORE

Dynamic MOdelling of REsilience
H2020 - 777084

D 1.2- Open-source code of

calibrated resilience model

Dissemination level Public

Contractual date of delivery 31.03.2022

Actual date of delivery 29.03.2022

Type Report

Version 1.0

Filename DynaMORE_Deliverable_report_D1.2
Workpackage WP1

Workpackage leader ALU-FR (Jens Timmer)

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 777084.

This report reflects only the author’s views and the Commission is not responsible for any use that
may be made of the information it contains.

H2020 research and innovation programme DynaMORE

Author list
Organisation Name Contact information
University of Freiburg, Germany | Shakoor Pooseh | shakoor.pooseh@fdm.uni-
freiburg.de
University of Freiburg, Germany Jens Timmer jeti@fdm.uni-freiburg.de

Executive Summary

This report summarizes the implementation of an exogenous linear autoregressive mixed-
effects model for the estimation of intra-individual dynamic networks of affects in
the programming language Julia. The model is suitable for data acquired by ecolog-
ical momentary assessment. We lay down the theoretical background and the build
up of the data types and functions that represent the data generating process in a
step-by-step fashion. We also provide the tools which are necessary to prepare simu-
lated and real data to be fitted by the Julia package MixedModels.jl. At this stage the
model is calibrated through simulation and the source code is stored in a private pass-
word protected GitLab repository, maintained by WP2, under https://gitlab.imbi.uni-
freiburg.de/DynaMORE/larmex. This model will be further calibrated and validated
using real data and eventually will be published as a Julia package by the end of Dy-
naMORE project.

The following sections of this text are written and maintained as a Jupyter notebook in
Julia and will accompany the final published open-source code as its manual.

D1.2 Page 1 of 21

https://gitlab.imbi.uni-freiburg.de/DynaMORE/larmex
https://gitlab.imbi.uni-freiburg.de/DynaMORE/larmex

H2020 research and innovation programme DynaMORE

1 Introduction

We consider very simple directed intra-individual networks comprising two symptom
nodes and one node for external factors. The two symptom nodes interact by enhancing
or dampening each other and the external factors are assumed to be acting on both nodes
in a one-way fashion, i.e. the possible effects of a symptom on the perception of external
factors are neglected.

Figure 1: Variables, S1 and S2, interact with each other leading to temporal correlation mean-
ing that the value of the source variable (node) at time ¢ has an impact on the value of its
target at time t + 1. Looped arrows indicate autoregressive effects. Exogenous factors act
on moods at the same time in a one-way fashion. Blue and red arrows indicate activation
and suppression respectively. Different thicknesses stand for distinct interaction strengths.
Dashed arrows indicate contemporaneous effects while solid ones are indicative of possible
temporal causalities.

Assuming intensive longitudinal data through ecological momentary assessment, we
formalize the mathematical representation of such networks, Figure 1, by exogenous Lin-
ear Auto-Regressive Mixed-Effects (LARMEx) models such that the autoregressive coef-
ficients represent the interactions and the external factors enter the model as exogenous
covariates. We let every parameter in the model to have fixed and random components
aiming at networks that are allowed to have variable structures over reasonable units
of time like days or weeks depending on the study design. Given the fact that a rich
theoretical and computational literature furnishes classic linear mixed-effects models, we
transform the autoregressive formulation to a classical one and use the already devel-
oped methods and tools. Then assuming our model is the true data generating process,
we simulate data using a predefined set of parameters and investigate the performance
and feasibility of this approach in delivering reliable estimates for different choices of the
number of observations and the intensity of noise.

2 Data generating process

Lets;; = [s1,52]], be the 2 x 1 vector corresponding to the symptom values from the ith
day at any observation occasion t = 1,2,...,n; where n; is the number of observations
per day and T denotes the transpose of a matrix.

Assuming that a collection of external factors (E) act on symptom nodes and their effect
could vary between days, the evolution of s; ; is represented by a LARMEx model as

sit = (B" +b{")sip—1+ (B +bf)ejs + (B + ;) +€i,

D12 Page 2 of 21

H2020 research and innovation programme DynaMORE

in which B and b represent the fixed and random effects (FE and RE henceforth). The
temporal (Granger-causal) connections between the symptoms are governed by the lag(1)
autoregressive term, (% + b{")s; ;1. The remaining terms represent the contemporane-
ous effects of E and the constants (intercepts). For simplicity we assume no connections
from symptoms to E.

3 Generating a set of known parameters

For simulating data with this model we need to specify the parameters. In Julia we im-
plement this using a struct.

mutable struct parLARMEx

end

B_AR: :Matrix{Float64}
B_E::Vector{Float64}
b_var: :Matrix{Float64}
b_cov: :Matrix{Float64}
b_ar::Matrix{Float64}
b_e::Matrix{Float64}
b_c::Matrix{Float64}

nVar::Int number of temporally connected nodes

seed::Int an integer to replicate, 0 to initialize the RNG anew
rng: :AbstractRNG RNG throught the simulation for consintency

nlL2Max: :Int how many random-effects to generate

nSamp: : Int initial sample size for gemerating REs, see genRE_CS()

fized-effects autoregressive coefficients
fized-effects coefficients of exogenous factors
variance of group of random-effects
variance-covariance matrix of random-effects
random-effects for autoregressive coefficients
random-effects for exogenous coefficients
random-effects for constant terms

T TR T R R S S R S

For the initialization of this struct we implement its constructor as

parLARMEx (;b=[], nVar=2, seed=0, nL2Max=100, nSamp=20000, B_ar=.3, B_e=.3,

b_var=[.03 .03 .03])

where the keyword arguments are:

b = [1:if provided with a matrix, RE are extracted from it otherwise generated
nVar = 2: number of temporally connected nodes

seed = 0: aninteger to replicate, 0 to initialize the random number generator (RNG)
anew

nL2Max = 100: how many RE to generate

nSamp = 20000: initial sample size for generating RE, see genRE_CS() for explana-
tion

B_ar = .3: absolute value of FE autoregressive coefficients, = [] for random values
between 0.1 and 0.6
B_e = .3: absolute value of FE exogenous coefficients, = [] for random values be-

tween 0.1 and 0.6
b_var = [.03 .03 .03]: for constructing a default variance-covariance of RE

For simplicity we restrict the fixed-effects to be

D1.2

Page 3 of 21

[1]:

[2]:

H2020 research and innovation programme DynaMORE

YRy P A P

which are generated using keywork arguments to the constructor of parLARMEx. It is also
possible to initialize these with random values by passing []. The variance-covariance of
the random-effects is built using b_var to be

0.

*
e
NNl ool ol
@
e
coocococ oo
®
o
xR
D
g
cooocococoo

e
S oo DD DD O OO

OO OO OO

S OO0 O OO o
o

)

3

This is not the final variance-covariance of the RE because one needs to control for the
stability of the autoregressive process. To this end, we sample a number of nSamp = 20000
set from a multivariate normal distribution of MVN(0, G) and retain nL2Max = 100 set for
which the absolute eigenvalues of B + b”" are less than one. These are stored in b_ar,
b_e, b_c, and the variance-covariance of this latter sample as b_cov.

This process is accomplished by calling the function
genRE_CS(rng,G,B_AR,maxSbj,nSamp)

inside the constructor which updates the fields corresponding to the random-effects and
their variance-covariance structure. In what follows we import the function definitions
saved at the file helperSim. j1, included in the appendix, and then construct the parame-
ters using a replicable RNG following seed = 1984.

include("helperSim.j1l");

par = parLARMEx(seed=1984);

4 Generating data

We assume that the data generating process has a two-level structure. The multiple ob-
servations are made on level I and these are nested in level II units. For EMA data, level
I could be the observations within one day, as many as n0ObsL1, which are nested in sin-
gle days with a total number of nL2. These characteristics together with the variance-
covariance of noise, signa, initial values for days, S0, and the vector of known exogenous
factors, E, are stored in another struct.

D12 Page 4 of 21

H2020 research and innovation programme DynaMORE

mutable struct simLARMEx
nObsL1::Int # number of observation on level I
nlL2::Int # number of untits on level II
sigma: :Float64 # wvariance of noise
SO::Matrix{Float64} #
E::Vector{Float64} #

wnitial values each day
knoun exzogenous factors
end

The constructor of this struct has the following signature,
simLARMEx (;rng=MersenneTwister(), nObsL1=10, nl2=36, sigma=.2, SO_max=.5, E=[])
and keyword arguments as:

* rng = MersenneTwister(): feed parLARMEx . rng for consistency and replication, ini-
tialized anew by default

* n0bsLl = 10: number of observation on level I

e nl2 = 36: number of units on level 11

® sigma = .02: variance of noise

* S0_max = .5: determines the amplitude of initial values and exogenous factors, 0.5
to keep trajectories mostly in [-1,1]

* E = []: known exogenous factors of size [nL2 x nObsL1], drawn randomly from
[0,S0_max] by default

The following code snippet sets up the configuration of the desired data set. The RNG
is carried over to provide replicability. Finally, genData () gives the simulated data along
with the noiseless data as dataframes and the signal-to-noise-ratio (SNR).

[3]: sim = simLARMEx(rng=par.rng);
simData,simData0,SNR = genData(par,sim);

[4]: # show(first(simData,5),allcols=true)
latexify(round. (simDatal[1:5,:],digits=2))

(41 4dr2 | s1 2| E
10| 1.0 | —0.07 | 044 | 027
10| 20| —003| 02049
10] 30| 02| 008019
10| 40| 03] —-004]023
10| 50| 019]—-017 026

The returned values are

* simData: the simulated data according to the setup so far
* simData0: the simulated data without the noise component used to calculate the
SNR

e SNR: the ratio of the variance of noiseless data to that of noise

D12 Page 5 of 21

H2020 research and innovation programme DynaMORE

5 Transforming to classical mixed-effects model

By stacking symptom values, parameters and covariates for every day separately, and
forming the design matrices for fixed and random effects, X and Z, data from a single day
takes the following matrix form which is equivalent to a linear mixed effects formulation.

Y, = X,’[g + Z;b; + €;

In this formulation for a network of two symptoms and one external nodes one has

T T
Yi=[s11 S12 ... Sim S21 S22 -+ Som);. P=[Bu P12 Bu P2 By B B BS)
and
[51,0 52,0 0 0 1 €1 0 07
51,1 521 0 0 1 () 0 0
o Sl,ni—l 52,111-—1 0 0 1 eni 0 0
XZ o Zl o 0 0 51,0 52,0 0 0 1 €1
0 0 51,1 52,1 0 0 1 ()
L 0 0 sim-1 S2m;-1 0 0 1 eyl

In its general form, the above equation for k symptoms, Y; is a k(n; — 1) x 1 vector of
symptom values, B is a (k* + 2k) x 1 vector of fixed effects, b; is a (k* + 2k) x 1 vector of
random effects, X; and Z; are k(n; — 1) x (k? + 2k) design matrices. The random effects
b; and residuals €; are assumed to be independent with a multivariate normal (MVN)

distribution of
[biei} ~ MVN ([00] , [G 00 21']) .

This step is done by the following function which gives another dataframe suitable for
performing the estimation.

prepData2Fit(rawData,idL2,endList,exglist)
with the following arguments:

rawData: the simulated data as a dataframe

1dL2: the column name for level II units, e.g., an id for each day, "idL2" here
endList: the list of temporelly connected symptoms, ["S1","S2"] here

exgList: the list of exogenous factors together with the constant terms, ["E","C"]
here

[6]: fitData = prepData2Fit(simData,"idL2",["S1","s2"],["E","C"]);
show(first(fitData,5),allcols=true)

D12 Page 6 of 21

[6]:

[6]:

[7]:

[8]:

H2020 research and innovation programme DynaMORE

df = fitDatal[l1:5,:]; df[:,3:end] = round.(df[:,3:end],digits=2);
latexify(df)

idL2 | tL1 S S11 S12 | S21 | S22 | E1| E2|Cl|C2
1.0| 20| -0.03 | —=0.07 | 0.44 | —0.0 0.0/049 0010100
1.0 | 3.0 0.2 | —0.03 02| —-0.0 00]019(0.0|1.0/0.0
1.0 | 4.0 0.3 0.2 0.08| 0.0 00]023(0.0{1.0/0.0
1.0 50| 0.19 03] -004| 00| -00]026]0.01.0]0.0
1.0 6.0 0.65 019| -017| 00| -0.0{049 00 |1.0/0.0

6 Setting up the formula for fitting

The prepared data has more columns representing the response variable S, and the pre-
dictors including the connections in the network S11, S12, S21, S22, E1, E2, as well
as the constant terms C1, C2. It also contains the level I time points tL1, and the level II
identifiers idL2. We provide a function

setFormula(fitData)

which constructs the formula suitable to feed in the Julia package MixedModels.jl. This
function is restricted only to a dataframe which has the exact columns as shown above.

frm = setFormula(fitData);

7 Fitting

We use the MixedModels.jl package in Julia to perform the estimation. It is similar to the
Ime4 in R but exhibits faster performance in our case.

fit = MixedModels.fit(MixedModel, frm, fitData, progress=false);
show(fit)

Linear mixed model fit by maximum likelihood
S~ 0+ S11 + 812 + S21 + S22 + E1 + E2 + (0 + S11 + S12 + S21 + S22 + E1
~+ E2
+ Cl + C2 | idL2)
loglik -2 logLik AIC AICc BIC
246.8663 -493.7327 -407.7327 -401.4678 -215.3554

Variance components:

ColumnVariance Std.Dev. Corr.
idL2 S11 0.019109 0.138235

S12 0.065390 0.255715 +0.26

521 0.025455 0.159545 -0.50 +0.68

D12 Page 7 of 21

https://juliastats.org/MixedModels.jl/stable/
https://juliastats.org/MixedModels.jl/stable/
https://github.com/lme4/lme4

H2020 research and innovation programme DynaMORE

S22 0.048207 0.219560 -0.70 +0.01 +0.37

E1 0.027348 0.165371 +0.49 +0.27 -0.05 -0.58

E2 0.021337 0.146070 +0.77 +0.57 -0.11 -0.45 +0.28

C1 0.031647 0.177895 -0.11 +0.20 +0.41 -0.15 +0.38 -0.45

C2 0.031128 0.176433 +0.33 +0.03 -0.15 -0.17 -0.31 -0.01 +0.34
Residual 0.017568 0.132545

Number of obs: 648; levels of grouping factors: 36

Fixed-effects parameters:

S11 0.16115 0.0441711 3.65 0.0003
S12 -0.482173 0.059415 -8.12 <le-15
521 -0.281178 0.0449767 -6.25 <1le-09
522 0.342208 0.0553473 6.18 <le-09
E1l 0.394389 0.0587841 6.71 <le-10
E2 -0.254405 0.0542693 -4.69 <le-05

8 Parameter recovery

In order to investigate how well one can recover the parameters, we generate data with
the following specifications:

e number of observations per day: 10

(¢2,SNR) € {(0.01,12), (0.02,6), (0.06,2)}

number of days, N € {4,6,...,36}

B, B¢ and B¢ as before

¢ data is generated for one simulated subject, 1000 times repeat
* at every iteration new parameters are generated

The following code in Julia creates a folder called bootstrap in the current working direc-
tory and for each noise intensity, sigma = .02 here, saves the true and estimated param-
eters of each simulation in different folders, re and reh, based on the number of days as
CSV files. Fixed-effects and the variances of random-effects are collected in two separate
CSV files as well.

function loopSim(csvDir, nSim, SO_max, sigma, n, P)

feh = zeros(nSim, 6)
sig = zeros(nSim, 9)
col = []

endList = ["S1", "S2"];
eXgLiSt = [IIXII s ”C”] R
for j in 1:nSim

D12 Page 8 of 21

H2020 research and innovation programme DynaMORE

par = parLARMEx(b=hcat(P.b_ar,P.b_x,P.b_c), nL2Max=n);

fName = joinpath(csvDir, "re", @sprintf("re_n%02d_%03d.csv", n, j));
re2csv(par, n, ["M1","M2"], ["X","C"], fName);

sim = simLARMEx(nlL2=n, SO_max=SO_max, sigma=sigma);

simData,_,_ = genData(par, sim);

fitData = prepData2Fit(simData, "idL2", endList, exgList);

frm = setFormula(fitData);

res = MixedModels.fit(MixedModel, frm, fitData, progress=false);

reh = DataFrame(only(raneftables(res)))
CSV.write(joinpath(csvDir, "reh", @sprintf("reh_n702d_%03d.csv",n,j)), reh)
feh([j,:] = coef(res)
siglj,:] = vcat(collect(res.sigmas.idL2), res.sigma)
col = coefnames(res)
end
return feh, sig, col
end
function wrapScropt()
baseDir = @sprintf("./bootstrap") # where to save data
mkpath (baseDir)
nSim = 1000 # number of simulations
b_var=.03 * [1 1 1]; SO_max=.5; sigma=.02;
nDay = 4:2:37 # number of days
par = parLARMEx(b_var=b_var, nL2Max=1000); # generate RE for a large number of days
sim = simLARMEx(SO_max=SO_max, sigma=sigma); # specify the simulation setting
for n in nDay
csvDir = joinpath(baseDir, @sprintf("sig).2f/n%02d/",sigma,n))
mkpath(csvDir)
fehName = @sprintf("feh_n%02d.csv",n) # CSV to store fized-effects
for d in ["re" "reh"] # folders for true and estimated random-effects
cD = joinpath(csvDir, d)
mkpath (cD)
end
try
feh, reSig, col = loopSim(csvDir, nSim, SO_max, sigma, n, par)
feh = DataFrame(feh, col)
CSV.write(joinpath(csvDir, fehName), feh)
reSig = DataFrame(reSig,vcat(col,["C1", "C2", "sigma"]))
CSV.write(joinpath(csvDir, @sprintf("sig_n’02d.csv",n)), reSig)
catch e
bt = catch_backtrace()
msg = sprint(showerror, e, bt)
println(msg)
break
end

D12 Page 9 of 21

H2020 research and innovation programme

DynaMORE

end
end
wrapScript ()

The code takes a couple of hours, depending of course on the computational power. Using
the estimated parameters we construct bootstrap confidence intervals for the fixed-effects,

Figure 2, and the variance of random-effects, Figure 3.

36 gg_ —————— ?_5 =—— ——= Bg —
— —_— e
32 = ——— 3 e ——
28 =——————— _— ———e
——— e
24 — e
e e
20 ——_— E——————————
e —
16 =——— E—————=
12
[
T 4
©
5 0 0.3 -0.3 0 0 0.3
] — (0=0.01, SNR=12) —— (0=0.02, SNR=6) —— (0=0.06, SNR=2)
o}
g 36 g'i —_—— g; —_— Bg e
= = —— —_— ——
32 E=-—2 —_—— —_—— e
— T e
28 E—— —_—— —_—— e
———— e ———
24 s —— ————2 s —— ——
E—3 —_
20 —_—— E————2
&——™= e —
16 —_—e —_—
e
12
8
4
-0.3 0 0 0.3 -0.3 0
Parameter value, fixed-effects
Figure 2: Estimations of fixed effects for different levels of noise intensity and number of
days. The number of observations per day is 10. True values of parameters are highlighted
bold on x axes. For every number of days at the horizontal axes, three lines are drawn rep-
resenting the bootstrap 95% confidence intervals around the median depicted by cross signs.
Every line is color-coded to demonstrate one noise intensity. Data has been generated for one
simulated subject, 1000 times repeatedly, with (¢2,SNR) € {(0.01,12), (0.02,6), (0.06,2)} and
estimations are done using MixedModels.jl package in Julia.

D12

Page 10 of 21

H2020 research and innovation programme DynaMORE

36 bg; —— bi'é g b% == bi ==
= e —x _— =
32 = —— ——= =g ==
— — e —— —_— _
28 = —— —— ——= E - — —
24 = = —0 _— = —0
20 s ——= E———0 _— ==
—_—— —_— e ——
16 e e —_—— e
— V= —_— ———
12 ———— —— e E=—an
" 8 = ————= e ————u =————— —=——n
© 42 — — e _—
©
Y
8 — (0=0.01, SNR=12) —— (0=10.02, SNR=6) —— (0=0.06, SNR=2)
(]
QO
£ 36 b3 —=— b3} —— by ——= by =
=} —_— — e ——
= 32 e —a E——= _—= ==
—_— = _ e —
28 ——0 e — = ==
E— ——n e ——a = — —
24 —— ——a — ——— s —— —
20 ES = e ——— _— =
—— —_—— e i
16 E———— = _—— =
— E——— e —
12 e R EE———— e
e — = e
8 i _— _— e
4 —_— E——————— —_— e =—————a
0 0.17 0.5 0 0.17 0.5 0 0.17 0.5 0 0.17 0.5
Parameter value, variance of random-effects
Figure 3: Estimations of the variance of random effects for different levels of noise intensity
and number of days. The number of observations per day is 10. True values of parameters
are highlighted bold on x axes, v/0.03 ~ 0.17. For every number of days at the vertical
axes, three lines are drawn representing the bootstrap 95% confidence intervals around the
median depicted by cross signs. Every line is color-coded to demonstrate one noise intensity.
Data has been generated for one simulated subject, 1000 times repeatedly, with (02, SNR) €
{(0.01,12), (0.02,6), (0.06,2) } and estimations are done using MixedModels.jl package in Julia.

We also calculate the relative estimation error, §, in the aforementioned cases as dy =
1§ — 0]/16] in which @ and are the true and estimated parameters respectively with
(02,SNR) = (0.02,6). To avoid computational difficulties only random effects larger
than 0.02 are considered in these analyses. We also report only the coefficients present in
a network representation, i.e., B, B¢, b* and b°. This is to show that in a mixed effects
model the prediction of random effects is not as reliable as fixed effects in terms of being
able to recover the parameters varying over days in our case. The reason is that only the
variance of random effects are present in the likelihood function and individual values
are not estimated directly but only up to their variance. More precisely what one gets
as the output of software packages like MixedModels.jl in Julia or Ime4 in R holds only
for the expected values and should not be considered as single parameter estimations. In
the following figure it is clearly seen that the median relative estimation error for random
effects approaches to about 40% as the number of days grows and the change is mini-

D12 Page 11 of 21

https://juliastats.org/MixedModels.jl/stable/
https://github.com/lme4/lme4

H2020 research and innovation programme DynaMORE

mal after 20 days. Whereas, for the fixed effects, the value is below 20% which indicates
that with a reasonable amount of data one could hope for even better estimates for the
fixed effects but this is still far from being optimal. The two separate solid and dashed
lines correspond to the coefficients of the exogenous factors which have poor estimations
compared to others, Figure 4.

1.0
== Random-effects

—— Fixed-effects

1 o o
IS) o

o
N

Median relative error, single parameter

0.0
4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

Number of days

Figure 4: Mean relative estimation errors. Solid and dashed lines represent the mean relative
estimation errors for the six parameters of a network as in Figure ?? fixed. Data is generated
for one simulated subject, 1000 times repeatedly, with (¢, SNR) = (0.02,6) and estimations
are done using MixedModels.jl package in Julia. The two lines with higher relative errors
correspond to exogenous factors.

9 Conclusion

In this work, we studied an extension of linear mixed-effects models by adding an autore-
gressive component to model the network representation of mental state which is suitable
to model intensive longitudinal data, the so-called ecological momentary assessments ac-
quired by experience sampling methods. Specifically, we assumed the simplest possible
network of two causally interacting state nodes under the influence of external factors
represented by a node acting on both states in a contemporaneous fashion.

We showed briefly how this representation is mathematically formulated and detailed
the implementation of such a model in Julia. The practical implementation of the data
generating process was shown by explicit codes which will be available on online pub-
lic repository, e.g., GitLab, as Julia package or a webapp accompanied by manuals as
notebooks like this report as well as all their implementations in Julia. We also provided
exemplary code for performing a bootstrap analysis to construct confidence intervals for
the estimations. The goal here was to calibrate the model through simulations by quan-
tifying the estimation errors. More calibration and validation will be performed as more
data acquired in the course of the ongoing DynaMORE project.

Given that our target was building individualized networks, we based our study on a

D12 Page 12 of 21

H2020 research and innovation programme DynaMORE

two-level model with daily observations nested in days for a specific respondent. Using
simulated data, we constructed bootstrap confidence intervals for the fixed effect param-
eters and showed what one could expect from this model as more days are added to
the observation. We argued that random effects are not directly estimated in this proce-
dure and highlighted the difference between the relative estimation errors for fixed and
random effects which showed that in a mixed model random effects are identified less
precisely and as the number of observations increases the gain in precision is very little.
Therefore, in order to infer individual networks from ecological momentary assessments,
one should build a two-level model with daily observations nested in days for a single
respondent.

We mainly considered one aspect of study design related to sample size and varied the
number of observations per subject by adding more days. We also showed how sensitive
such a model might be to the intensity of noise in data. However, the provided code could
be modified to study other variants to these scenarios.

D12 Page 13 of 21

H2020 research and innovation programme DynaMORE

9.1 Appendix: helperSim. jl

using LinearAlgebra, Random, Distributions, DataFrames
using MixedModels, CSV, CategoricalArrays, Latexify

parLARMEx (;b=[], nVar=2, seed=0, nL2Max=100, nSamp=20000,
B_ar=.3, B_e=.3, b_var=[.03 .03 2])

Construct the struct holding the settings for generating parameters
for simulation.

The default values of the keyword arguments specify a model with two

temporally connected network nodes with one exogenous factor acting on both.

keyword arguments:

- b = [1°: if provided with a matrix random-effects are extracted,

otherwise generated
27 : number of temporally connected nodes
0% : an integer to to replicate, O to initialize the
random-number-generator anew

- "nlL2Max = 100" : how many random-effects to generate

- "nSamp = 200007 : initial sample size for generating random-effects,
see genRE_CS() for explanation

- "nVar
- “seed

- "B_ar = .37 : absolute value of fixed-effects autoregressive coefficients,
= [1° for random values between 0.1 and 0.6
- "B_e = .37 : absolute value of fixed-effects exogenous coefficients,

= []° for random values between 0.1 and 0.6

- "b_var = [.03 .03 .03]": for constructing a default variance-covariance of RE
mutable struct parLARMEx

nVar: :Int

seed::Int

rng ::AbstractRNG

nlL2Max: :Int

nSamp: : Int

"Fixed-effects autoregressive coefficients"

B_AR: :Matrix{Float64}

"Fixed-effects exogenous coefficients"

B_E::Vector{Float64}

b_var::Matrix{Float64}

"Variance-covariance of random-effects"

b_cov: :Matrix{Float64}

"Random-effects autoregressive coefficients of size [‘nVar~2" x “nL2Max™]"

b_ar::Matrix{Float64}

"Random-effects exogenous coefficients of size ['nVar® x “nL2Max™]"

D12 Page 14 of 21

H2020 research and innovation programme DynaMORE

b_e::Matrix{Float64}

"Random-effects constant terms of size ["nVar® x “nL2Max]"

b_c: :Matrix{Float64}

function parLARMEx(;b=[], nVar=2, seed=0, nlL2Max=100, nSamp=20000,
B_ar=.3, B_e=.3, b_var=[.03 .03 .03])

if seed ===

rng = MersenneTwister();
else

rng = MersenneTwister(seed);
end

if isempty(B_ar)
B_AR = rand(rng,.1:.01:.6,2,2) . [1 -1 ; -1 1]
else
B_AR = B_ar .x [1 -1 ; -1 1] #.6 .# Matrixz(1.0I,nVar,nVar) .- .3;
end
G = Diagonal(vcat(b_var[1]*ones(nVar~2) ,repeat(b_var[2:end],inner=nVar)));
if isempty(b)
b_ar,b_e,b_c,b_cov = genRE_CS(rng,G,B_AR,nL2Max,nSamp)
else
samp = sample(rng,1:size(b) [1],nL2Max)

b_ar = b[samp,1:nVar~2];
b_e = b[samp, (nVar~2+1):(nVar~2+nVar)];
b_c = b[samp, (nVar~2+nVar+1) : (nVar~2+2*nVar)];
b_var = b_cov = reshape(Float64[],0,2)
nSamp = 0
end

if isempty(B_e)
B_E = rand(rng,.1:.01:.6,2,1) .*x [1 ; -1]
else
B_.E = B_e .x [1 ; -1]
end
return new(nVar,seed,rng,nlL2Max,nSamp,B_AR,B_E,b_var,b_cov,b_ar,b_e,b_c)
end
end

simLARMEx (;rng=MersenneTwister (), nObsL1=10, nlL2=36, sigma=.02,
SO_max=.5, E=[])

Construct the “struct™ holding the settings for generating simulated data.

By the default values of the keyword arguments it is assumed that the data
generating process has a two-level structure. The multiple observations are
made on level I and these are nested in level II units.

keyword arguments:

D12 Page 15 of 21

H2020 research and innovation programme DynaMORE

“rng = MersenneTwister () : feed “parLARMEx.rng" for consistency and
replication, initialized anew by default

"n0bsLl = 107 : number of observation on level I

- "nL2 = 367 : number of units on level II

“sigma = .027: variance of noise

"SO0_max = .57 : determines the amplitude of initial values and exogenous

factors, 0.5 to keep trajectories mostly in [-1,1]
- "E = [1°: known exogenous factors of size [*nL2" x “nObsL17],
drawn randomly from [0, SO_max] by default

mutable struct simLARMEx
nObsL1::Int
nlL2::Int
sigma: :Float64
S0: :Matrix{Float64}
E::Vector{Float64}
function simLARMEx(;rng=MersenneTwister(), nObsL1=10, nL2=36, sigma=.02,
SO_max=.5, E=[])
rangeS = range(0,stop=S0_max,length=50)
if isempty(E)
E = sample(rng,rangeS, (nL2*n0bsL1)) ;
end
SO = sample(rng,[-1 1],nlL2) .*
hcat (sample(rng,rangeS,nlL2) ,sample(rng,-rangeS,nlL2))
return new(nObsL1,nl2,sigma,S0,E)
end
end

genRE_CS(rng,G,B_AR,nlL2Max,nSamp)
Generate random-effects parameter.

For consistency it is advised that one instance of a random-number-generator
should be used throughout the simulation. This function is called inside the
constructor of “parLARMEx"~ and draws a sample of size "nSamp”™ from a
multivariate normal Distributions MVN(O, G*). Then using the fixed-effect
autoregressive coefficients, "B_AR™, retains tha random-effects for which
the eigenvalues of the sum of fixed- and random-effects are less tha one.
This guarantees that the autoregressive component of the process is stable.
Finally a number of "nlL2Max” parameter sets are returned in the matrices
“b_ar®, “b_e’, “b_c’ and their variance-covariance matrix as “b_cov’.

Example:

b_ar,b_e,b_c,b_cov = genRE_CS(rng,G,B_AR,nL2Max,nSamp)

D12 Page 16 of 21

H2020 research and innovation programme

DynaMORE

function genRE_CS(rng,G,B_AR,nL2Max,nSamp)

nVar =

mvn
ri
ind
ri
rl
eg
ind
ri

1:
(n

(n

samp =
b_ar =

b_e
b_c

return

end

size(B_AR) [1] # nE = length(b_var)-1; d = nVar-2 + nlVar*nE;

MvNormal (G) ;
rand (rng,mvn,nSamp) ;

all. (eachslice(abs. (ri[1: (nVar~2+1*nVar),:]) .< .9,dims=2));

ri[:,ind];
reshape(ri[l1:nVar~2,:],nVar,nVar,size(ri) [2]) .+ B_AR;
eigvals. (eachslice(rl,dims=3));

[tany(abs. (i) .>1) for i in eg];

ril[:,ind];

nVar~2;
Var~2+1) : (nVar~2+nVar) ;
Var~2+nVar+1) : (nVar~2+2*nVar) ;

sample (rng,axes(ri,2) ,nL2Max)
rila,samp]"’

rile,samp]’

rilc,samp]’
b_ar,b_e,b_c,cov(ri');

genData(P,S)

Generate simulated data given two “struct® of parameter and data

specifications.

It returns the simulated data along with the noiseless data as
dataframes and the signal-to-noise-ratio “SNR™.

Example:

simData,simDataO,SNR = genData(parLARMEx() ,simLARMEx());

function genData(P,S)
datal
datal

rho

Sigma

for

i

= zeros(S.nL2*S.n0bslL1,P.nVar)

= copy(datal)

O # Noise_rho;
Matrix((S.sigma-rho)I,P.nVar,P.nVar) .+ rho;
in 1:S.nL2

BAR = P.B_AR + reshape(P.b_ar[i,:],P.nVar,P.nVar)"';

E1l

= S.E[((i-1)*S.n0bsL1+1): (i*S.n0bsL1)]

mvn = MvNormal (Sigma) ;

d1l
do
d1l

= copy(transpose(rand(P.rng,mvn, S.n0bsL1)));
0 .x di;
[1,:] = 8.80[i,:];

D1.2

Page 17 of 21

H2020 research and innovation programme

DynaMORE

do[1,:] = S.S0[1i,:]1;
ib = 1
for t in 2:(S.n0bsL1)

dif[t,:] += BAR * d1[t-1,:] + (P.B_E .+ P.b_e[i,:]) *

E1[t] + P.b_cl1i,:]

do[t,:] += BAR * dO[t-1,:] + (P.B_E .+ P.b_el[i,:]) =*

E1[t] + P.b_cl1i,:]
end
datal[((i-1)*S.n0bsL1+1): (i*S.n0bslL1), :]

d1[1:S.n0bslL1, :]

dataO[((i-1)*S.n0bsL1+1): (i*S.n0ObsL1),:] = d0[1:S.n0bsL1,:]

end

tLl = repeat(1:S.n0bsL1,S.nL2);

idL2 = repeat(1:S.nlL2,inner=S.n0bsL1);

if all(P.B_E .== 0)
simData = DataFrame(idL2=idL2,tL1=tL1);
simData0 = DataFrame(idL2=idL2,tL1=tL1);
cols = ["S1","S2"]

else
simData DataFrame(idL2=idL2,tL1=tL1,E=S.E);
simData0 = DataFrame(idL2=idL2,tL1=tL1,E=S.E);
cols = ["S1","S2","E"]

end
for i in 1:P.nVar
insertcols! (simData ,i+2,cols[i] => datall:,il);
insertcols! (simData0,i+2,cols[i] => dataOl[:,i]);
end
SNR = var(data0) / Sigmal[l,1]
return simData, simDataO, SNR;

end

prepData2Fit (rawData,idL2,endList,exglist)

Prepare simulated\real data to be fit by LARMEx.

It is assumed that data has been acquired by ecological momentary

assessment where respondent are observed multiple times in the course
of several days or weeks.
Arguments:

“rawData™: simulated or real data as a dataframe

"idL2": column name for level II units, e.g., an id for each day,

T"idL2"" here

“endList™: list of temporelly connected symptoms, ~["S1","S2"]" here
“exglist™: list of exogenous factors together with the constant terms,

D1.2

Page 18 of 21

H2020 research and innovation programme DynaMORE

~ I:HEII s IICII] ~ here

function prepData2Fit(rawData,idL2,endList,exglList)

end

nVar = length(endList)
nExg = length(exglist)
colS = map(string,repeat(endList,inner=nVar) ,repeat(l:nVar,nVar));
col ["idL2";"tL1";"S";colS]
if "E" in exglist
col = vcat(col,map(string,repeat(["E"],nVar),1:nVar))

end
if "C" in exglist
col = vcat(col,map(string,repeat(["C"],nVar),1:nVar))
end
D = reshape(Float64[],0,3+nVar~2+nVar*nExg)
121D = unique(rawData.idL2);
for sj in 12ID
di rawData[rawData.idL2.==sj,:];
nObs = size(d1,1);
iD = repeat(Matrix(di[2:end,1:2]),nVar);
dS = Matrix(di[2:n0bs,endList]);
S = reshape(dS,nVar*(nObs-1),1);
dL = kron(Matrix(1I,nVar,nVar), Matrix(di[1:(nObs-1),endList]));
cat = hcat(iD,S,dL)
if "E" in exglist
dE = kron(Matrix(1.0I,nVar,nVar),Matrix(d1[2:n0bs, ["E"]]));
cat = hcat(cat,dE)
end
if "C" in exglist
C = repeat([1],n0bs-1);
dC = kron(Matrix(1I,nVar,nVar),C);
cat = hcat(cat,dC);
end
D = vcat(D,cat)
end
fitData = DataFrame(D,col);
fitDatal[!,1:2] = convert.(Int16,fitDatal:,1:2]);
fitDatal[!,idL2] = categorical(fitDatal:,idL2]);
return fitData;

setFormula(fitData)

Generate a mixed-effects formula from a specifically formatted dataframe.

D12 Page 19 of 21

H2020 research and innovation programme DynaMORE

The input is supposed to have a special format where in a two-level
longitudinal data the level II identifiers are in the first and the
stacked observation in the third columns. The columns “4:end” are
supposed to represent the network structure and constant terms.
Example:
“names (fitData) ™ :
11-element Vector{String}: ["idL2","tL1i","s","S11",6"s12",6"s21","S22",
"E1","E2","C1","C2"]

function setFormula(fitData)

cols = names(fitData);

idL2 = cols[1];

colS = cols[3];

colRE = cols[4:end];

indC = findall(x -> occursin("C",x),colRE);

colFE = copy(colRE);

deleteat! (colFE,indC);

frm = string(colS," ~ 0 +",join(colFE,'+')," + (0+",join(colRE,'+'),

", idL2,") ")
return Qeval(@formula($(Meta.parse(frm))));

end

re2csv(P,n,endList,exglist,fName)

Save the random-effects from a “parLARMEx™ instance as a CSV file.
nmn
function re2csv(P,n,endList,exglist,fName)
nVar = P.nVar
col = map(string,repeat(endList,inner=nVar) ,repeat(l:nVar,nVar));
D =P.b_ar[l:n,:]
if "E" in exglist
col = vcat(col,map(string,repeat(["E"],nVar),1:nVar))
D = hcat(D,P.b_e[1:n,:])
end
if "C" in exglist
col = vcat(col,map(string,repeat(["C"],nVar),1:nVar))
D = hcat(D,P.b_c[1:n,:])
end
re = DataFrame(D,col)
CSV.write(fName,re)
end

fe2csv(P,n,endList,exglist,fName)

D12 Page 20 of 21

H2020 research and innovation programme DynaMORE

Save the fixed-effects from a “parLARMEx™ instance as a CSV file.
function fe2csv(P,endList,exglist,fName)
nVar = P.nVar
col = map(string,repeat(endList,inner=nVar) ,repeat(l:nVar,nVar));
D = reshape(P.B_AR',(1,nVar~2))
if "E" in exglist
col = vcat(col,map(string,repeat(["E"],nVar),1:nVar))
D = hcat(D,reshape(P.B_E, (1,2)))
end
if "C" in exglist
col = vcat(col,map(string,repeat(["C"],nVar),1:nVar))
D = hcat(D, [0 0])
end
if length(D) == length(P.b_var)
D = vcat(D,reshape(P.b_var, (1,8)))
else
bv = hcat(P.b_var[1]*ones(nVar~2) ,repeat(P.b_var[2:end],inner=nVar))
D = vcat(D,reshape(bv, (1,8)))
end
fe = DataFrame(D,col)
CSV.write(fName, fe)
end

D12 Page 21 of 21

