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Abstract

When modeling longitudinal biomedical data, often dimensionality reduction as well as dynamic
modeling in the resulting latent representation is needed. This can be achieved by artificial neural
networks for dimension reduction, and differential equations for dynamic modeling of individual-level
trajectories. However, such approaches so far assume that parameters of individual-level dynamics
are constant throughout the observation period. Motivated by an application from psychological
resilience research, we propose an extension where different sets of differential equation parameters
are allowed for observation sub-periods. Still, estimation for intra-individual sub-periods is coupled
for being able to fit the model also with a relatively small dataset. We subsequently derive prediction
targets from individual dynamic models of resilience in the application. These serve as interpretable
resilience-related outcomes, to be predicted from characteristics of individuals, measured at baseline
and a follow-up time point, and selecting a small set of important predictors. Our approach is seen to
successfully identify individual-level parameters of dynamic models that allows us to stably select pre-
dictors, i.e., resilience factors. Furthermore, we can identify those characteristics of individuals that
are the most promising for updates at follow-up, which might inform future study design. This un-
derlines the usefulness of our proposed deep dynamic modeling approach with changes in parameters
between observation sub-periods.

Keywords— deep learning; dynamic modeling; longitudinal data; observational data; variable selection

1 Introduction

Deep learning techniques, i.e., artificial neural networks with several layers, typically are associated with impressive
performance on image data, such as in biomedicine (Esteva et al., 2017). However, there now also is a surge
of proposals for combining deep learning with dynamic modeling, specifically using differential equations in a
dimension-reduced latent representation obtained by neural networks (Rubanova et al., 2019; Chen et al., 2018;
Kidger et al., 2020). In our own work with an application to psychological resilience research, we used such
techniques for identifying individual-level temporal trajectories of mental health in relation to external stressor
exposure (Köber et al., 2020). We could thus quantify resilience of individuals, understood as absent or moderate
reactivity of mental health to stressor exposure when compared to individuals with similar levels of adversity
(Kalisch et al., 2017, 2021), and use regularized regression techniques for identifying resilience factors, i.e., baseline
characteristics that predict such resilient outcomes. Yet, this application also led to the need to allow for changes
in resilience in observation sub-periods, i.e., changes in the individual-level differential equation parameters to thus
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accommodate the empirical observation that mental health reactivity to stressors does not necessarily constitute
a stable trait but may change over time (Kalisch et al., 2021).

While there are some other differential equation approaches for modeling dynamics and (normally-distributed)
deviations from the main effects in psychological resilience (Montpetit et al., 2010; Driver and Voelkle, 2018), these
do not allow for intra-personal changes of these dynamics. When not requiring modeling in a latent representation,
i.e., when fitting dynamic models at the observed level, there are many potentially useful regression modeling
frameworks (Rizopoulos, 2012; Putter and van Houwelingen, 2017), and correspondingly various regression mod-
eling approaches could be considered for updates of parameters. For example, L1-regularized regression could be
considered (Inan and Wang, 2017; Wang et al., 2012; Schelldorfer et al., 2011, 2014) or coupling the likelihood of
multiple points in time (Schmidtmann et al., 2014; Zöller et al., 2016), as proposed in our own work. Moreover,
there are many spline-based approaches that allow for modeling of changes in the dynamics (Refisch et al., 2021;
Meng et al., 2021; Hong and Lian, 2012; Bringmann et al., 2017; Wang et al., 2007). To our knowledge, however,
there is no approach that allows for simultaneously identifying a mapping to a latent space for dimension reduction
and changes in individual-level dynamics with differential equations.

In contrast to such regression modeling frameworks, we consider modeling with ordinary differential equations
(ODEs) in a dimension-reduced latent representation obtained by artificial neural networks, specifically variational
autoencoders (VAEs; (Kingma and Welling, 2013)). We propose an approach for estimating separate sets of
differential equation parameters for the two intra-individual sub-periods in our application. We acknowledge
potential intra-individual similarity between the sub-periods by tying the parameters together with a penalty
term, where estimation is enabled by differentiable programming (Innes et al., 2019; Hackenberg et al., 2021).
We subsequently use the L1-regularized regression, i.e., the Lasso, to identify predictors of resilience (that is, in
approximation, stressor reactivity) in the in the sub-periods and thus characteristics of individuals where follow-up
measurement might be valuable.

In the following, we briefly describe the psychological resilience application that motivates our methods devel-
opment in Section 2 before describing the proposed approach in Section 3 and illustrating it with results from the
application in Section 4. We subsequently discuss the potential usefulness of our approach in other application
settings and potential further extensions.

2 A psychological resilience application of latent dynamic mod-
eling

Psychological resilience is the maintenance or rapid recovery of a healthy mental state during and after times of
adversity (Kalisch et al., 2017). One element of the definition is that both mental health problems (P) and stressor
exposure (E) can change over time and may even do so permanently. Influential resilience studies (Bonanno et al.,
2011) investigated how mental health changes in response to one single potentially-traumatic life event and found
groups of similar individual mental health trajectories such as resilient (showing stably good or improving mental
health in the months or years after the event) or vulnerable (showing stably poor or worsening mental health).
These studies implicitly assume that the observed temporal changes in mental health are due to only a single
stressor event and that individual differences in the mental health trajectory can be explained by some baseline
individual characteristic. However, most individuals are continuously exposed to more or less severe stressors.
These may include macrostressors (severe life events) but also more “mundane” microstressors, or daily hassles
(Hahn and Smith, 1999), which also have an impact on mental health (Serido et al., 2004; Kalisch et al., 2021).
Further, when exposed to hardships, individuals may undergo processes of learning and adaptation that may
make them more or less reactive to such mental health challenges. This is supposed to express in changes in the
strength or efficiency of the predictive resilience factors, in turn predicting changes in mental health reactivity. For
example, an increase in someone’s emotion regulation capacity (a resilience factor), as can sometimes be observed
in individuals undergoing difficult life phases, may translate into reduced reactivity and eventually better mental
health outcomes (a resilience process). In the maladaptive case, a breakdown in emotion regulation may lead to
worse outcomes (Kalisch et al., 2019, 2021). From this perspective, resilience research is a paradigmatic example
of applications that require a dynamic analysis of both predictors and outcomes. In short, investigating resilience
should ideally involve repeated longitudinal measurements of stressors and mental health. Further, as far as
predictive individual characteristics may also change, resilience studies should ideally also assess such potential
resilience factors repeatedly (Kalisch et al., 2017, 2019). Such longitudinal studies pose manifold problems for
data collectors and analysts.

The Mainz Resilience Project (MARP) is an ongoing study that started in 2016 with a planned study duration
per participant of seven years. MARP is conducted by the University Medical Center Mainz and the Leibniz
Institute for Resilience Research (Kampa et al., 2018). Our choice of two sub-periods is motivated by the design
of the MARP study, where potential resilience factors (predictors) are repeatedly measured approximately every
1.75 years in laboratory battery time points (B0, B1, ...), whereas repeated online measures of stressor exposure
and mental health problems, serving to determine individual stressor reactivity (outcome), are regularly conducted
at higher frequency (every three months, time points T0, T1, ...) at and between the battery time points (Kalisch
et al., 2021). At the current stage of ongoing data collection, B0 can be used to predict stressor reactivity between



Figure 1: Overview of ODEnet extension for intra-individual learning of potentially changing dynamics.
We parameterize our system of ordinary differential equations (ODEs) with a feed-forward neural network
(ODEnet) which receives summary statistics of the respective sub-period (sp1 or sp2) as inputs. The
critical advancement of our algorithm is the distinction and intra-individual coupling of sp1 and sp2
for each respondent. The mean squared error (MSE) of each intra-individual parameter set is summed,
weighted by λsp, and provided as additional term to the loss function (see Equation (7)). Sp1 covers all
observations T0–T6 from the baseline battery measurement (B0) to the repeated resilience factor testing
battery (B1). Sp2 comprises all observations of mental health and stressor exposure after that.

B0 and B1 (sub-period 1: T0–T6) and B1 to predict reactivity afterwards (sub-period 2: T6 and later).
For inclusion into longitudinal modeling there must be at least two observations, i.e., online measurements at

different time points T, of both P and E for an individual. This is the case for N = Nsp1 = 181 respondents in
a first sub-period of 1.75 years (terminated by the second resilience factor battery B1). In subsequent sub-period
after B1 (corresponding to the online measurements T6 and later), data of Nsp2 = 120 respondents are available.
On average, 11.2 observations (min = 2, max = 23, sd = 6.1) were recorded. This corresponds to a total of
NE = 2.052 and NP = 2.087 observations in the two sub-periods. Each observation at T comprises p = 28 mental
health items (GHQ-28; (Goldberg et al., 1997)) and e = 58 daily hassle items (MIMIS battery; (Chmitorz et al.,
2020)). Each mental health item is scored by the participants on a severity scale ranging from 0 to 3; for each
daily hassle item, participants indicated the number of days in the last week (0 to 7) at which the hassle occurred.
Participants were recruited in a critical life phase aged 18 to 20 at study inclusion with a prehistory of critical
life events.

In addition to longitudinal measurements (T0, T1, ...), there is an extensive battery of potential resilience
factors for characterizing individuals. These repeated resilience factor testing batteries (B0, B1, ...) comprises
questionnaire-based, neuropsychological, neuroimaging, and biological assessments, of which we here focus on
the questionnaires. This information, which will be used for prediction modeling with the Lasso, is available for
(Nlasso,sp1 = 120) at B0, and (Nlasso,sp2 = 53) respondents with renewed assessment at B1. This particular data
situation allows us to investigate interesting downstream tasks, e.g., which of the repeatedly assessed potential
resilience factors at B1 are worth updating the most to predict (changes in) the dynamics of stressor reactivity
(see Figure 3).

3 Methods

We first provide a brief overview of the proposed approach, before subsequently describing its components in detail.
A schematic illustration is given in Figure 1. VAEs are used for separate dimensionality reduction of mental health
and stressor items. Longitudinal summary statistics of the time series of the resulting latent representation are
fed into a second neural network—the ODEnet—which provides individual-level ODE parameters and their initial
conditions (ICs) as output. The ODE parameters (ηi,1,sp, . . . , ηi,4,sp) and the ICs are obtained for each individual,
separately for the two sub-periods. We introduce individual-level dependency by penalizing the difference of each
ODE parameter between the sub-periods (but not the ICs). Thereby, the ODEnet is trained to find ODE
parameters that best describe the dynamics of the respective sub-period and, at the same time, enforce some
correlation between parameter sets from the same respondent, reflecting that the data is provided from the same



respondent.

3.1 Dimensionality reduction per time point with VAEs

We choose Variational Autoencoders (VAEs; Kingma and Welling, 2019) to find lower-dimensional latent dis-
tributions qφ(z|x) making use of variational inference (Blei et al., 2017). Let xPi = (xPi,1, . . . , x

P
i,p), be a vector

of p items of P and xEi = (xEi,1, . . . , x
E
i,e) be a vector of e items of E and i ∈ {1, . . . , NP } or i ∈ {1, . . . , NE},

respectively (see section 2). The latent variables of E or P are denoted as zEi and zPi for each realized observation
i. Then, the VAEs are trained by maximizing the evidence lower bound (ELBO) of the marginal log-likelihood

log p(x1, . . . , xN ) =

N∑
i=1

log p(xi)

≥
N∑
i=1

(Eq(z|x) log p(xi|z)−KL (q(z|xi)||p(z)))

where the first term of the right hand side is the expectation of the log-likelihood of xi given z with respect
to q(z|x). The Kullback-Leibler divergence (DKL) penalizes deviations of the posterior from the prior. Temporal
dependence between the observations is established by the system of ODEs.

Intuitively, VAEs comprise an encoder and a decoder. The purpose of training the encoder (aka inference or
recognition model) is to find good variational parameters φ that parameterize the distributions qφ(z|x) in the
latent space in a way, the decoder can reconstruct samples of that latent distribution that resemble the inputs xi.
In our case, the former is achieved by two separate EncoderNets

(µPi , log σPi ) = EncoderNetφP (xPi ) (1)

(µEi , log σEi ) = EncoderNetφE (xEi ) (2)

which yield the latent distributions

qφ(zPi |xPi ) = N (µPi , log σPi ) (3)

qφ(zEi |xEi ) = N (µEi , log σEi ) (4)

for each complete observation i. The two separate DecoderNets(θ) then take samples of qφ(z|x) and are
trained to increase the log-likelihood of the inputs given samples of the posterior distributions. Please note, while
the expected value of the posterior distribution µ captures the position of the observation in the latent space, the
variance σ captures the uncertainty that is related to this mapping (see also Kingma and Welling, 2019).

For computation, we plug in the Poisson log-likelihood and the closed form of DKL for a Gaussian prior and
posterior. Thereby, training objective of our VAEs become

Loss(θ, φ;xi) =
1

2

N∑
i=1

(1 + log((σ(xi))
2)− (µ(xi))

2 − (σ(xi))
2)︸ ︷︷ ︸

DKL(φ)

+

N∑
i=1

(λi − xi × log(λi))︸ ︷︷ ︸
Poisson reconstruction error (θ)

+

λV AE × (
∑
i

φ+
∑
i

θ)︸ ︷︷ ︸
Weight regularization

where µ and σ are the mean and standard deviation of the latent distribution depending on the observed values
xi. The expected value of the Poisson distribution of each item is denoted as λi depending on the observation.
To prevent overfitting, we regularized the encoder (φ) and decoder (θ) weights of both VAEs with λV AE .

The Poisson distribution does not perfectly match the MARP data since we find moderate levels of overdis-
persion for some items. Yet, the Poisson distribution avoids an additional parameter, which might be difficult
to determine, by coupling the expected value and the dispersion. We used the tanh activation functions in the
middle layers. In the final layer, we used a ReLU activation function to strictly pass non-negative values to λi.



3.2 ODEs to model the trajectories of E and P in the latent space

We use ODEs to couple the latent representations of P and E over time and allow for separate intra-individual
parameter sets for periods between the resilience factor testing batteries (B0, B1), providing potential predictors
of the individual dynamics. The exact design of such an ODE system is a crucial modeling decision since it governs
how each component changes and requires domain expertise. We were able to model a slightly more complicated
system of ODEs than Köber et al. (2020). Specifically, we use

dfzPi,t
dt

= ηi,1,sp × zPi,t + ηi,2,sp × zEi,t (5)

dfzEi,t
dt

= ηi,3,sp × zEi,t + ηi,4,sp × zPi,t (6)

where changes in zPi,t, the latent trajectory value of mental health problems (P) of respondent i at t with
i ∈ {1, . . . , N} and t ∈ {1, . . . , T}, and zEi,t, the latent trajectory value of stressors exposure (E), are driven by
their own current value. Additionally, zPi,t is allowed to change in response to zEi,t and vice versa. Subscript sp in
ηi,1,sp indicates that each individual set of parameters differs intra-individually between sp1 and sp2.

Negative values for ηi,1,sp and ηi,3,sp effectively realize system-inherent damping (Boker et al., 2010), where
high E and P values are more quickly driven back to low values in the latent space. Thus, a high negative ηi,1,sp,
in particular, reflects good recovery from mental health problems (since the majority of observations are mapped
into the positive valued latent space or close to zero). This can be understood as one facet of stressor reactivity,
where possible surges in mental health problems tend to be short-lasting. Positive values for ηi,2,sp realize the
adverse effect of E on P. A low positive ηi,2,sp value thus reflects low responsivity of mental health to stressors
in the first place, as the second element in our equation system that, overall, describes an individual’s stressor
reactivity. ηi,4,sp allows for the opposite direction and expresses that people with high P report more E in the
future. This is deemed plausible, both because mental health problems are stressors in their own right that can
induce further adverse reactions and because mentally ill persons may generate, or be confronted with, more
conflicts or other types of adversities (Gerin et al., 2019). Key parameters, however, for the interpretation of an
individual’s resilience status are ηi,1,sp (recovery) and ηi,2,sp (reactivity).

At each realized measurement of stressor exposure, its integrator fzEi
is updated to the mapping of the actually

observed values to the latent space zEi at the precise point in (study) time when this observation was taken. This
reflects the notion that stressor exposure levels are only partly driven by an endogenous property of the ODE
system (i.e., damping and mental health) but mainly reflect exogenous forces, that is, the sudden occurrence or
absence of stressors that lead to abrupt changes in the latent stressor values (see above).

The benefits of such an ODE system compared to discrete-time models like regression are crucial for analyzing
the data from the MARP study. Most importantly, differential equations take all available information at the
precise time into account. Thereby, irregular sampling intervals and entirely (or partly) missing observations are
dealt with by the properties of our dynamical system (assuming non-informative missingness).

3.3 Finding individual and potentially changing ODE parameters with the
ODEnet

The critical advancement of our method is the extension of the ODEnet to learn potentially changing ODE param-
eters ηi,s,sp. The key idea is depicted in Figure 1. The ODEnet is trained by minimizing the LossODE(τ, ηi,s,sp)
and provides a two-element vector of ODE parameters, each of length s ∈ {1, . . . , 4}, for both sub-periods

ηi,s,sp = (ηi,s,sp1, ηi,s,sp2) = ODEnetτ (xPi , x
E
i )

with the observed items xPi and xEi as inputs and the trainable parameters τ . The ODEnet internally calls
the EncoderNet (see Equation 1 and 2) which maps the observed values into the latent space. Subsequently, we
calculate several summary statistics of the intra-individual sub-period in the latent space (e.g., integrals, first
and last observations, and differences; see Table 1 in Köber et al. (2020)). It was left to gradient descent to
find a good combination of these summary statistics to minimize LossODE(τ, ηi,s,sp). All summary statistics are
required to be computable with only two observations from P and E (which can be reported at any point in time,
not necessarily during the same observation). The main purpose of the ODEnet is to minimize the sum of the
squared difference of the trajectory fzi(t, ηi,s,sp) and the mean of the latent space distribution µi at the precise
point in study time t depending on period-specific individual ODE parameters ηi,s,sp. Accordingly, the training
objective of the ODEnet is



LossODE(τ, ηi,s,sp) =

N∑
i=1

T∑
t=1

(fzi(t, ηi,s,sp)− µzi,t)
2 +

λsp ×
4∑
s=1

(ηi,s,sp1 − ηi,s,sp2)2 +

λODEp ×
4∑
s=1

ηi,s,sp +

λODEnet ×
∑
i

τ .

(7)

Importantly, the period-specific individual parameter sets within ηi,s,sp are tied together by penalizing the
squared difference of the two parameter sets ηi,s,sp1 and ηi,s,sp2. This bond of ODE parameters across the
sub-periods reflects their intra-individual dependence. Furthermore, this tying helps to prevent overfitting of the
ODE parameters to a certain period with, e.g., only a few unusual measurements. The hyperparameter λsp ∈ R>0

allows to tune the strength of this connection. We additionally penalize both the sum of the ODE parameters
with λODEp as well as the weights of the ODEnet with λODEnet to avoid overfitting.

The concrete values of the hyperparameter λsp can be decided based on subject-matter considerations, e.g.,
by imposing stronger similarity between intra-individual sub-period dynamics for subject areas which are known
for evolving slowly, or by optimization criteria, e.g., cross-validated mean squared error (MSE) as usual in Lasso
analyses (Hastie et al., 2015). Please note, the differences of the initial conditions (IC) are not penalized, although
the ODEnet also provides them.

More detailed, the ODEnet is a three-layer feed-forward neural network. We use a ReLU activation function
in the middle layer and no transformation in the final layer. Using no activation function in the last layer does
allow the ODEnet to find the parameters of the dynamical system freely; put differently, it enables the ODEnet to
provide the full numerical range of possible ODE parameters. We increased the capacity of the ODEnet—the mid-
layer has 12 nodes now—compared to Köber et al. (2020), mainly due to the increased number of training examples
(with the additional split at the second lab visit, most respondents contributed two time series). Hyperparameter
tuning on the empirical data with regularization and a simulation study agreed that this architecture balances
bias and variance well. Learning the ICs overcomes the limitation of Köber et al. (2020), which regarded the first
observation as ground truth.

To increase training stability, we initialized the ODEnet with very small weights and trained it rather slowly
for 100 epochs with a small learning rate of α = 10e−4. Furthermore, we scale the inputs to ensure approximately
equal numerical size. Flexible dynamical modeling is provided by DifferentialEquations.jl (Rackauckas et al.,
2019) and differentiable through neural nets via DiffEqFlux.jl (Rackauckas et al., 2019). To deal with unit
non-response, Loss(θ, φ;x, λV AE) and LossODE(τ, ηi) are only evaluated at actual measurement time points. All
neural networks were trained with Flux.jl (Innes et al., 2018) and the Adam optimizer (Kingma and Ba, 2014).
We used this website (LeNail, 2019) as a basis for drawing the ODEnet in Figure 1.

3.4 A two-stage Lasso approach to repeated battery updates

We assess the capabilities of the incoming predictor information to improve the prediction beyond the older
(but potentially still relevant) subject information with a variant of the Lasso tailored to this data situation.
The particularity of this data is that an extensive (and expensive) multi-modal resilience factor testing battery
including—next to questionnaires—also neuroimaging and biosampling, amongst others, is repeated in regular
intervals (at B0, B1, ...). In the meantime, several samples of key resilience outcome variables (mental health
problems and stressor exposure) are drawn (at T0, T1, ...). To be able to learn about the usefulness of the
incoming testing battery information (B1) for prediction, we add an additional weight vector w to the standard
Lasso training criterion. The optimal parameters for all available battery information (B0 and B1) predicting the
dynamics in the second sub-period (sp2) are

β̂sp2 = argmax
β
{1

2
|y −X × β|2 + λLasso

p∑
j=1

w × β}

where X is the design matrix, y is a resilience-related outcome, and λLasso is the penalty coefficient of the
Lasso.

This approach has been already suggested for cross-sectional data settings before (Zou, 2006) and can be
implemented simply using the established R package glmnet (Friedman et al., 2010); this circumstance fosters
reusability of the approach, also independently of the estimation of dynamics with the ODEnet as suggested
above. In the first step of our two-stage approach, the Lasso is trained only with predictor data of the initial
baseline observation (B0) to predict the learned dynamics of the first sub-period. Since no previous knowledge is
assumed, the penalty factor is set to its default (w = 1) for all potential predictors. In a second step, both battery

https://alexlenail.me/NN-SVG/index.html


information from B0 and B1 provide potential predictors of the dynamics of the second sub-period (sp2). We use
the previous Lasso analysis and penalize the initial data from B0 with − log(V IF ) while we penalize incoming
data uniformly with the default (w = 1).

We use the variable inclusion frequencies (V IF ) because single lasso analyses might be unstable regarding the
selected variables. For this reason, Wallisch et al. (2021) suggest using resampling to determine model stability
(see also Heinze et al. (2018) and Sauerbrei et al. (2015)). More precisely, we resampled a proportion of m = 0.8
and repeated the Lasso analysis 1.000 times, using 6-fold cross-validation to determine the strength of the lasso
penalty once.

More detailed, assuming that each testing battery (B0, B1, ...) provides the same number of variables v, and
that there are less individuals who met the minimum requirements, Nsp1 is usually larger than Nsp2. The v×nsp1
matrix Xsp1 of potential resilience factors is accompanied by the weight vector wsp1 = (wsp1,1, . . . , wsp1,v) =
(1, . . . , 1) when predicting an indicator of the dynamics of the first sub-period ysp1. For the second sub-period,
however, we stack both baseline information on top of each other, accordingly, Xsp2 is m×nsp2 where m = 2× v
(in case vsp1 = vsp2). The weight vector of the second sub-period can be expressed as

wsp2 =

{
− log(V IF (Xr)), for r ≤ m

2

1, for r > m
2

}
with r ∈ {1, . . . , p}.
We predict the ODE mental health responsivity parameter ηi,2,sp which is a choice made for this paper,

intending to demonstrate the method. One could also choose a different prediction target, e.g., ηi,1,sp which
reflects the recovery of mental health, or impose a considerable amount of stress on the entire individual dynamical
system (or, more precisely, each learned parameter set ηi,s,sp plugged into the shared dynamical system structure)
and predict mental health at predefined time points (as done by Köber et al. (2020)), depending on which aspect
one thinks is more interesting from a subject-matter perspective.

4 Results

First, we compare dynamical systems (see Equation (5)) of mental health problems (P, blue) and stressor exposure
(E, red) of two exemplary individuals (rows) with different intra-individual difference penalization terms λsp
(columns; see Equation (7)) in Figure 2. As in Figure 1, the y-axis shows the position of P and E in the latent
space, and the x-axis shows time (where one unit in x represents three months in study time). The expected
values of the latent value distributions, learned by the VAEs, are expressed as dots. The trajectories, governed
by the ODEs, are depicted as lines. Figure 2 exemplifies that this algorithm is able to detect potential sub-period
differences and that λsp can alter the strength of this difference (based on, e.g., subject-matter considerations or
cross-validation).

Furthermore, this particular data situation allows us to investigate the practice-oriented question of which
parts of the repeated battery are particularly worth updating. To illustrate this, we predict the ODE mental
health responsivity parameter ηi,2,sp directly—which captures how the level of stressor exposure influences the
gradient of mental health problems—with a two-staged lasso approach (see the Methods section for more details)
and show and discuss the results in Figure 3 with a heat map.

Please note that while only information of B0 is included in the analysis of sp1, variables of B0 and B1 are
included in the analysis of sp2. However, due to the very low penalization weight w of the frequently selected
variables (and reversely the very high weight of the non-selected variables) they are almost certainly (not) selected,
which renders their visualization pointless. Since variable selection approaches are known for being unstable, we
choose VIF (Wallisch et al., 2021) for both as the decisive criterion for our two-staged procedure determining the
weights and for visualizing the results.

A subsequent question is whether we can predict the changes of ηi,2,sp2 in an auto-regressive manner. Put
differently, do the recommendations on promising parameter updates hold even when including ηi,2,sp1 into the
Lasso? All findings are discussed in the figure captions.

5 Discussion

Recently, there have been several proposals for deep dynamic modeling, where differential equations are used on
latent representations obtained by VAEs. Motivated by an application from psychological resilience research, we
removed the assumption of constant dynamics throughout the whole study period, implicit in these approaches.
Instead, we showed how individual-level dynamic models could be fitted for two individual sub-periods and
introduced a dependency between by a penalization term, which made our approach feasible also for a dataset
with relatively small number of individuals.

We then used regularized regression, specifically the Lasso approach, to identify potential resilience factors
from a baseline battery and its follow-up update that could predict summary statistics obtained from individual
resilience trajectories. Such a variable selection approach, e.g., allows pruning the battery for subsequent lab
visits, thus potentially saving time and money. We find that five resilience factors in the initial testing battery are



Figure 2: This figure shows an exemplary comparison of the differences between sub-periods of dynamical
systems. Mental health problems (P, blue) and stressor exposure (E, red) are shown for two respondents
(rows) with low (λsp = 0.4) and high (λsp = 3.6) values of intra-individual deviation penalty (columns).
The upper row shows a respondent with considerable change in the ODE parameters between sub-period
1 to 2 (sp1 and sp2). P increase in sp1. In contrast, P decreases in sp2. This change is visibly mitigated,
although still present, when the ODEnet is trained with a stronger penalization of parameter differences
λsp = 3.6 (right column). The second row shows a respondent with a low change in the ODE parameters.
Accordingly, increasing λsp (from left to right) does not affect the intra-individual comparison strongly.



Figure 3: Variable inclusion frequencies (VIF) of the Lasso analysis with different prediction targets.
This heat map provides insights into which battery measures (x-axis) predict the targets (y-axis) derived
for this longitudinal focus. All rows of the y-axis depict the two sub-periods or, more precisely, ηi,2,sp1
and ηi,2,sp2 from the ODEs (see Equation (5)), which captures the individual gradient of mental health
in response to stressor exposure in the dynamical system. Importantly, sp1 was predicted solely with B0
(initial lab visit at the beginning of the study). The second sub-period sp2 was predicted with both B0 and
B1 (the latter is the first repetition of the initial lab visit’s testing battery around 1.75 years later), albeit
with unequal penalty weights. This plot indicates that there are five stable and predictive variables in B0
(see lowest row) when predicting sp1. Due to their high VIF, these variables are penalized with zero/very
small wsp2 when predicting sp2 (see the dedicated Methods section for more details). Accordingly, they
are almost certainly entailed in the prediction of sp2 dynamics as well. Therefore, in the two upper
rows, we show only the B1 predictors. Regarding potential resilience factors in the second testing battery
B1, there is a mixed picture. While updates of already picked variables are chosen rather seldom, other
measures now play a more important role when predicting sp2. The upper row (sp2 ar, for autoregressive)
includes ηi,2,sp1 as an additional predictor in the Lasso analysis. This mitigates the VIF only slightly,
indicating a rather stable pattern of particularly valuable parameter updates in B1. We deliberately do
not show or discuss the specific constructs that we found to predict the individual dynamics since we
focus on methods development here.



particularly promising for predicting the dynamics in the first sub-period. While we pick few variables from the
second lab visit in the second sub-period again, we could identify a small set variables that could be recommended
for update. This suggests that a dramatically reduced battery would be sufficient for this prediction task. This
findings holds when explicitly predicting parameter changes with an auto-regressive approach.

To deal with a relatively small number of respondents, our model also made efficient use of the vast majority
of training data to learn the lower-dimensional representations, trajectories, and predictors. In particular, we
provided all measurement time points separately as observations to the VAEs, and did not attempt to fit more
complex neural networks architectures with time structure, such as recurrent neural networks, as time structure is
already covered by the ODEs. Such dynamic models at the heart of neural networks are known to reduce sample
size requirements in deep learning algorithms drastically (Rackauckas et al., 2020).

We also had to take several additional countermeasures to reduce the data hunger of deep learning methods,
such as coupling the expected value and dispersion parameter by assuming a Poisson distribution for the item
data. Furthermore, we have trained our neural networks on all available data and did not reserve any test set
to investigate the generalization error. Instead, the role of subsequent validation is provided by the prediction
with the Lasso. Specifically, the argument is that we could not have identified characteristics that prediction
resilience prediction targets of the dynamic modeling would not reflect true underlying structure. Our insights
and approaches regarding the feasibility of deep learning approaches when facing moderate sample sizes may also
be more generally helpful in other studies that want to use similarly sophisticated approaches but are in doubt
of whether their sample size is sufficient.
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