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Executive Summary 

We contribute open source code for preprocessing longitudinal data by combining dynamic 
modeling and deep learning. More specifically, we develop an algorithm which maps 
longitudinal observations into the latent space using a deep generative model and estimate 
the trajectories using another neural network, which parameterizes a system of differential 
equations. In doing so, we overcome the limitations of classical statistical approaches, deep 
learning, and dynamic modeling when applied exclusively. This algorithm is also attractive to 
subject matter researchers because it allows estimating resilience free of distributional 
limitations. The deep generative model estimates distributions in the latent space where the 
variance of the distribution expresses uncertainty related to this particular observation (see 
Figure 1). Sampling from these distributions in the latent space allows generating an 
arbitrary number of imputations that can be smoothly integrated into the established 
toolkits for multiple imputation. We developed this algorithm interactively with our 
collaboration partners, discussing dynamic modeling with WP1 and receiving subject matter 
insights from WP3. MARP and LORA data were also provided by WP3, which we used for 
developing and extensive testing. The code is available to WP1 and WP3 on our shared cloud 
(DynaCLOUD), as well as our GitLab repository. 
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Abbreviations 

VAE  Variational Autoencoder 

ODE  Ordinary Differential Equation 

ELBO  Evidence Lower Bound 
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1 Deliverable report  

1.1 Introduction 

We started our journey by investigating more classical statistical approaches for longitudinal 
data—such as landmarking and joint modeling—but we turned our attention to a 
combination of differential equations and deep learning for several reasons. Compared to 
classical statistical approaches, differential equations offer a variety of advantages. Most 
importantly, they overcome the common assumption of discrete-time models that time 
spans between measurements need to be equal. This has substantive benefits also for 
dealing with missing values and real-world observations patterns where, e.g., data on mental 
health is available but missing for stressors within one observation. On the other hand, deep 
generative models like Variational Autoencoders (VAEs) learn the data generating processes 
in a low-dimensional latent space. VAEs allow drawing samples from the learned 
distributions to generate multiple, differing, and likely samples of missing observations. 

This reflects the very recent trend in machine learning and scientific modeling to merge the 
advantages of both fields. Most notably, combing deep learning with dynamic modeling 
promises to significantly lower the sample size requirements, which usually accompany deep 
learning algorithms. This advantage suits resilience data particularly well since many 
thousands of longitudinal training examples will not be available to resilience research for 
the foreseeable future. At the same time, deep learning allows to learn arbitrarily complex 
functions; this is a significant advantage compared to differential equations and classical 
statistical approaches. An additional advantage of our approach—particularly relevant to 
subject matter researchers—is that the parameters of the differential equations are 
estimated freely for every respondent, i.e., without constraints regarding their distribution, 
direction, or strength. This reflects the notion of resilience where individual differences in 
stressor response are of primary interest but do not necessarily follow a predefined 
distribution. 

To accomplish this, we combined advanced dynamic modeling techniques with Variational 
Autoencoders (VAEs) and connected the elements of our algorithm with differentiable 
programming. For the current version of the algorithm, we made particular use of its 
capabilities to find low-dimensional representations in the latent space where the data is 
mapped non-linearly into the latent space. Compared to standard Autoencoders, VAEs 
model the latent space representations as distributions with a certain mean and variance. 
The variance captures the uncertainty related to this particular observation. Differentiable 
programming frees training procedures by allowing us to experiment with all kinds of 
parameter updates. We found in our extensive test runs that pretraining the VAEs and the 
ODEnet followed by sequential training of the VAEs and ODEnet, i.e., training each for one 
epoch before iterating again, results in the lowest losses. 

1.2 The algorithm 

An overview of the algorithm is depicted in Figure 1. The arrows indicate how the data flows 
through the algorithm. The suggested algorithm has two essential parts, dimensionality 
reduction, and trajectory estimation; both tasks are done with neural networks (upper row). 
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We trained two VAEs—one for mental health and one for daily hassles—to estimate the 
one-dimensional distributions in the latent space for each observation. Subsequently, we 
harness the temporal and individual structure and extract a variety of trajectory indicators. 
This information is used as inputs to a feed-forward neural net; this ODEnet is trained to 
provide ODE parameters that minimize the squared distance of the ODE trajectory, and the 
observation mapped into the latent space. 

More detailed, the VAEs reduce the number of dimensions to one for each VAE (a) with the 
standard Evidence Lower Bound (ELBO) loss function with a Poisson log-likelihood which 
reflects the count character of the data (see figure 1). Thereby, we map the observations 
into the latent space using a VAE whose encoder and decoder weights (𝜃, 𝜙) were trained 

minimizing the ELBO ℒ(𝜃, 𝜙; 𝑥) to reduce the dimensions of mental health problems 𝑥𝑖,𝑗,𝑡
𝑔ℎ𝑞

, 

𝑖 ∈ {1, … , 𝑁}, 𝑗 ∈ {1, … , 𝐽}, 𝑡 ∈ {1, … , 𝑇𝑖} and stressors 𝑥𝑖,𝑗,𝑡
𝑑ℎ , 𝑖 ∈ {1, … , 𝑁}, 𝑗 ∈ {1, … , 𝐽}, 

𝑡 ∈ {1, … , 𝑇𝑖} with 𝐽 ∈ {28,58}, measured by the General Health Questionnaire 28 (ghq; 
where higher values indicate more mental health problems) and a battery of 58 daily hassles 
(dh; which is a subset of the hassles scale) to one dimensional latent representations 

𝑧𝑖,𝑡
𝑔ℎ𝑞

∼ 𝑁(𝜇, 𝜎) and 𝑧𝑖,𝑡
𝑑ℎ ∼ 𝑁(𝜇, 𝜎) each. 

 

 

Figure 1: Overview of algorithm 
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After learning the location of the observed values in the latent space, we reintroduce the 
intra-individual temporal data structure applying the logic of a time plot (with z on the y-axis 
and continuous time on the x-axis) to each individual with at least two successful 
observations (b) in both groups of variables. This allows us to extract a variety of trajectory 
indicators, e.g., an estimate of the integral of both trajectories with a step function as well as 
the difference of the first and last z-value (see Table 1 for a full list). These trajectory 
indicators serve as inputs to the standard feed-forward ODEnet (c), which provides the ODE 
parameters. It was left to gradient descent and backpropagation to find the best 
combination of these inputs. The parameters of the ODEnet were trained to minimize the 
squared distance between the ODE trajectory and the observation evaluated precisely at the 
point in time when the respondents provided the data. The comparatively simple ODE 
system—which governs how the trajectories change and interact—is designed with the 
limited data size in mind. 

Figure 1 d) shows a solved ODE which connects the means in the latent space. We use a 
system of ODEs to model the trajectories of mental health and stressors in the latent space. 
The exact design of such an ODE system is a crucial modeling decision since it governs how 
each component changes and, accordingly, requires domain expertise. Given our sample size 
and sampling frequency, we work with a rather simple ODE system, which reflects the basic 
notion of resilience to keep the number of estimated ODE parameters 𝜂𝑖  small. Specifically, 
we used: 

𝑑𝑓
𝑧𝑖

𝑔ℎ𝑞

𝑑𝑡
= 𝜂𝑖,1𝑧𝑖,𝑡

𝑔ℎ𝑞
+ 𝜂𝑖,2𝑧𝑖,𝑡

𝑑ℎ 

𝑑𝑓
𝑧𝑖

𝑑ℎ

𝑑𝑡
= 𝜂𝑖,3𝑧𝑖,𝑡

𝑑ℎ 

This structure is informed by the theoretical model of resilience, where 𝑧𝑖,𝑡
𝑔ℎ𝑞

 and 𝑧𝑖,𝑡
𝑑ℎ change 

according to their own value, but also in response to the other. At each realized 
measurement, the value of the integrator of the latent daily hassles trajectory 𝑓

𝑧𝑖
𝑑ℎ is 

updated to the actually observed value 𝑧𝑖,𝑡
𝑑ℎ. This reflects the theoretical notion that the 

experienced stressor levels are only partly endogenous. Rather, exogenous forces—which 
are not captured in this study—lead to abrupt changes in the stressor load. 

The benefits of such an ODE system in comparison to discrete-time models like regression 
are manifold. For example, ODEs acknowledges the irregular sampling intervals of the data. 
We gained vital insight by our close cooperation with WP3 both regarding their domain 
expertise and data supply. Importantly, WP3 provided us with data from MARP and LORA 
study, which is very similar to what we expect in DynaM-OBS and DynaM-INT. In MARP and 
LORA, longitudinal observations stem from online assessments—where respondents were 
asked every three months to login and complete a questionnaire—which not all of them did 
in a timely manner. Furthermore, respondents did not respond at all or only to one of the 
two item batteries. We expect the temporal responding patterns to be much more irregular 
in DynaM-OBS and DynaM-INT, given the even more ambitious sampling scheme. In contrast 
to discrete-time models, differential equations can take all available information into 
account and overcome problems of classical statistical approaches elegantly by integrating 
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the system at the precise points in time. Furhermore, we had fruitful discussions with WP1 
who are experts in the field of dynamical modeling. 

An additional advantage of our approach is that the ODE parameters for every respondent 
are estimated freely, i.e., without constraints regarding their distribution, direction, or 
strength. This is accomplished by estimating the parameters of the ODE system 𝜂𝑖,1 − 𝜂𝑖,3 
with the ODEnet—a feed-forward neural network—with 16 summary statistics as inputs (see 
Figure 1 c and Table 1 for details). Importantly, the summary statistics are selected with data 
availability in mind. Since some individuals just started recently to provide data, all summary 
statistics need to be computable with only two observations of both item groups, which is 
the minimum requirement to be included in the longitudinal analysis. 

The ODEnet provides the individual parameters of the ODE system 𝜂𝑖,1−3 as outputs. 
Accordingly, the overall structure of how mental health and daily stressors change is the 
same for all respondents and dictated by resilience research. Also, the ODEnet learns just 
one set of parameters. However, the summary statistics included in the ODEnet differ from 
person to person. The ODEnet is trained to minimize the squared difference between the 

trajectories 𝑓
𝑧𝑖

𝑔ℎ𝑞 and 𝑓
𝑧𝑖

𝑑ℎ and the observed means of 𝑧𝑖,𝑡
𝑔ℎ𝑞

 and 𝑧𝑖,𝑡
𝑑ℎ with backpropagation. 

Accordingly, the individual parameters do not obey any predefined distribution and can be 
estimated in the absence of any distributional restriction coupled to the grand mean (which 
is what, e.g., random effects models would do) to minimize the loss function best. 

We implemented this algorithm in the programming language Julia which is known for its 
performance and readability. 

1.3 Methodological details 

We choose VAEs to find the lower-dimensional representation because they provide a 
flexible framework with numerous potential extensions and applications. VAEs consist of a 
recognition model and a generative model. The purpose of training the recognition model 
(aka inference model or encoder) is to find the variational parameters 𝜙 of a neural net to 
approximate the posterior distribution of the latent variable 𝑧 given the inputs 𝑥, i.e., 
𝑞𝜙(𝑧|𝑥). The parameters of the generative model (aka decoder) 𝜃 are trained to increase 

the log-likelihood of the inputs given random samples from the posterior distributions. To 
train the recognition and generative model simultaneously, we maximize the evidence lower 
bound (ELBO) of the marginal log-likelihood 

log𝑝(𝑥) = ∑ ∑ log

𝑇

𝑡=1

𝑁

𝑛=1

𝑝(𝑥) ≥ ∑ ∑ 𝔼𝑞(𝑧|𝑥)

𝑇

𝑡=1

𝑁

𝑛=1

[∑ log

𝑃

𝑝=1

𝑝(𝑥|𝑧)] − ∑ ∑ KL 

𝑇

𝑡=1

𝑁

𝑛=1

(𝑞(𝑧|𝑥)||𝑝(𝑧)) 

where the first term of the right hand is the expectation of the log-likelihood of 𝑥 given 𝑧 
with respect to 𝑞(𝑧|𝑥). The Kullback-Leibler divergence (𝐷𝐾𝐿) penalizes deviations of the 
posterior from the prior. For computation, we plug in the Poisson log-likelihood and the 
closed form of 𝐷𝐾𝐿 for a Gaussian prior and posterior. Thereby, our training objective 
becomes 
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ℒ(𝜃, 𝜙; 𝑥) =
1

2
∑(

𝑁

𝑖=1

1 + log((𝜎𝑖(𝑥))2) − (𝜇𝑖(𝑥))2 − (𝜎𝑖(𝑥))2) ∑ 𝜆

𝑁

𝑖=1

− 𝑥 × log(𝜆) 

 

where 𝜇𝑖 and 𝜎𝑖 are the mean and standard deviation of the observation, and 𝜆 is the 
expected value of the Poisson distribution. The Poisson distribution does not optimally suit 
the data since we found moderate levels of overdispersion for some of our items. However, 
the Poisson distribution has the computationally efficient assumption of a coupled expected 
value and dispersion. This assumption eases up computation and needs considerably fewer 
parameters to estimate; it suits most of our items reasonably well. We usd 𝐽 nodes and 𝑡𝑎𝑛ℎ 
activation functions in the mid-layers. In the final layer, we used a 𝑅𝑒𝐿𝑈 activation function 
to strictly pass non-negative values to 𝜆. All neural networks are trained with Flux.jl and 
ADAM. 

1.4 Individual ODE parameter estimation with the ODEnet 

The parameters of the ODEnet 𝜏 were trained to minimize the squared difference of the 
trajectory at the precise point in time 𝑡 and the mean of the latent space distribution 𝜇𝑧𝑖,𝑡

. 

ℒ𝑂𝐷𝐸(𝜏, 𝜂𝑖) = ∑ ∑(

𝑇

𝑡=1

𝑁

𝑛=1

𝑓𝑧𝑖
(𝑡, 𝜂𝑖) − 𝜇𝑧𝑖,𝑡

)2 

The ODEnet is a separate feed-forward neural net with two layers and 16 inputs; the mid-
layer and end-layer have three nodes (due to data size considerations). As inputs, we use a 
mixture of integrals, first and last observations, differences, and autocorrelations (see Table 
1). 

1.5 Details on training and data structure 

When coding this algorithm, we made use of differentiable programming. This provides 
substantial flexibility when training the neural networks. In our empirical investigations with 
MARP data, we found that the best results were obtained with a combination of separate 
pretraining of the VAE and ODEnet. Subsequently, we compared joint training 
fit_node(data; train_mode = “joint”) of all involved components vs. a 
sequential strategy fit_node(data; train_mode = “sequential”) where we 
trained the VAE components separate from the ODEnet in one epoch. This leads to further 
decreases in the loss components also compared to the least ambitious training mode of 
separately training the VAE and the ODEnet fit_node(data; train_mode = 

“ode_only”). In this analysis, we pretrained both VAEs with a learning rate of 𝛼 = 5−5 
for 80 epochs. Then, we pretrained the ODEnet separately for 50 epochs with 𝛼 = 1−6. 
Then, we sequentially trained both nets in the same epoch with 𝛼 = 1−6 for 100 epochs. 

To deal with unit non-response, ℒ(𝜃, 𝜙; 𝑥) and ℒ𝑂𝐷𝐸(𝜏, 𝜂𝑖) are only evaluated at actually 
occured measurements. To feed our networks, we impose a artifical grid strucutre on our 
data and impute the missing values with arbitrary values. We also generated two weight 
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vectors 𝐰 ∈ {0,1} of lenght 𝑇 with with 𝐰 = 1 for observed values and 𝐰 = 0 for the 
provisionally imputed observations. All loss terms above are multiplied with this weight 
vector before they are summed up. 

2 Tables and other supporting documents 

The ODEnet is a separate feed-forward neural net with two layers and 16 inputs; the mid-
layer and end-layer have three nodes (due to data size considerations). As inputs, we use a 
mixture of integrals, first and last observations, differences, and autocorrelations (see Table 
1). 

Input Category Scaled by 

First obs of ghq O 1 

First obs of dh O 1 

First obs ghq − first obs dh D 1 

First obs ghq − last obs ghq D 1 

First obs ghq − last ghq D 1 

First obs dh − last obs dh D 1 

First obs dh − last obs ghq D 1 

Integral of ghq I 10 

Integral of dh I 10 

Integral of ghq2 I 10 

Integral of dh2 I 10 

Integral of ghq (absolute value) I 10 

Integral of dh (absolute value) I 10 

Mean of Autocorrelation ghq AC 100 

Mean of Autocorrelation dh AC 100 

: Table 1: Details of ODEnet inputs   

3 Conclusion 

In this report, we described our open source code for preprocessing longitudinal data from 
psychological resilience studies, as we can expect in both DynaM-INT and DynaM-OBS. We 
presented a dynamic modeling approach using and extending state-of-the-art deep 
generative models. 1 More specifically, we adapted the standard VAE—which is usually used 
with Bernoulli variables—to a Poisson distribution that captures the empirical data 

                                                           
1
 Technically, nothing prevents us from replacing the VAE distributions with scores of more conventional 

dimensionality reduction techniques. We would lose, however, the quantification of uncertainty, which is 

characteristically for the VAE. Furthermore, our model is trained jointly, i.e., dimensionality reduction and 

trajectory estimation can inform each other. This joint training provides an optional advantage of this model 

compared to all other methods (to our best knowledge). 
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reasonably well. And we learned person-specific, distribution-free parameters to capture the 
trajectories in the latent space with the ODEnet. Both parts of the algorithm, the VAEs and 
the ODEnet can be trained separately or jointly harnessing the benefits of differentiable 
programming. 

We argued that differential equations are capable of overcoming the known difficulties of 
most statistical and machine learning methods which usually accompany observational, 
longitudinal data of resilience studies. Differential equations take into account the irregularly 
spaced observations and are not affected by missing observations. We combined it with 
VAEs for several reasons. A widely-known advantage of such deep learning algorithms is 
their capability to provide non-linear transformations when mapping data into the latent 
space. Since these lower-dimensional representations are modeled as distributions, they 
already entail and quantify the uncertainty of these representations. We will extend this 
algorithm by integrating data at different time scales and more complicated ODE systems. 


